[概要] 最近のkaggle のコンペのwinning solution で、stacked generalization がよく使われています。これの元になった論文は、1992 年のWolpert さんによるものです。 triskelion さんのブログKaggle Ensembling Guide | MLWave の中でもこの手法についての説明があります。 様々な学習器を上手く組み合わせて、より精度の良いモデルを作ろうというのが基本的な考え方です。具体的には次の図のような感じです。 level 0 は、元となるデータです。またこの場合における各学習器はgeneralizer と呼ばれています。level 0 のデータにgeneralizer を適用して生成されたデータがlevel 1 のデータとなります。 その後も、同様に名づけられています。 [過去のコンペ] まずは、多層パーセプト