前回の記事が思いのほか好評だったので、今回はPythonの基礎を図解にまとめてみました。 これからPythonに入門する方、初学者の方への参考になれれば幸いです。 前回の記事↓ 押さえたい基礎 押さえたい基礎の分野は9つになります。 以下で詳しく見ていきます。 数値計算 数値計算は演算子を確認します。 数値の型(int・float)
新人: 「本日データサイエンス部に配属になりました森本です!」 先輩: 「お、君が新人の森本さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森本くんは Python なら書けるかな?」 新人: 「はい!大学の研究で Python 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら
はじめに 本書は,筆者が長年書き溜めた様々な実務的な最適化問題についてまとめたものである. 本書は,Jupyter Laboで記述されたものを自動的に変換したものであり,以下のサポートページで公開している. コードも一部公開しているが,ソースコードを保管した Github 自体はプライベートである. 本を購入した人は,サポートページで公開していないプログラムを 圧縮ファイル でダウンロードすることができる. ダウンロードしたファイルの解凍パスワードは<本に記述>である. 作者のページ My HP 本書のサポートページ Support Page 出版社のページ Pythonによる実務で役立つ最適化問題100+ (1) ―グラフ理論と組合せ最適化への招待― Pythonによる実務で役立つ最適化問題100+ (2) ―割当・施設配置・在庫最適化・巡回セールスマン― Pythonによる実務で役立つ
はじめに プログラミング自体は文系、理系、年齢関わらず勉強すればある程度ものになります。プログラミングがある程度できるようになるとTensorflow,PyTorchやscikit-learn等のライブラリで簡単にできる機械学習やデータサイエンスに興味を持つの必然! これからさらになぜ上手くいくのか・いかないのかの議論をしたい、社内・外に発表したい、理論的な所を理解したい、先端研究を取り入れたい、応用したい等々と次々に実現したい事が増えるのもまた必然でしょう。このときに初めて数学的なバックグラウンドの有無という大きな壁が立ちはだかります。しかし、数学は手段であって目的ではないので自習に使える時間をあまり割きたくないですよね。また、そもそも何から手を付けたら良いかわからないって人もいるかと思います。そんな人に向けた記事です。本記事の目標は式の意図する事はわからんが、仕組みはわかるという状態に
東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめました Python入門講座 東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいです Pythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io 東大のPython本も非常にオススメです Pythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4ws Pythonプログラミング入門 - 東京大学 数理・情報教育研究センター Google Colabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip
指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー
2020年も多くの素晴らしい技術書がたくさん出ました. その中でも(昨今のトレンド・流行りも手伝ってか)Python本の多さ・充実度合いは目立つものがあります. (このエントリーを執筆した12/19時点で)Amazonの本カテゴリで「Python」と検索すると1,000件以上出てきます*1. これだと目的の本にたどり着くだけで疲れそうです. このエントリーでは, 主にPythonを学びたい・現在使っている方 手元の業務を効率化したり, RPAっぽいことをやりたい方 エンジニア・データサイエンティストとして業務や趣味・個人開発をされている方 を対象に, 今そして来年2021年に読んでおきたいPython関連書籍(と抑えておきたいサービス) をエンジニアでありデータサイエンティストである私独自の視点で紹介します*2. なおこのエントリーはこのブログで例年執筆している「Python本まとめ」の2
1. オブジェクト指向の起源 2003年チューリング賞の受賞者アラン・ケイさんはよくオブジェクト指向プログラミングの父と称されます。ご本人も憚ることなく、幾度、公の場で発明権を宣言しています。しかし、ケイさんは「C++」や「Java」などの現代のオブジェクト指向言語を蔑ろにしています。これらの言語は「Simula 67」という言語を受け継いだもので、私が作った「Smalltalk」と関係ないのだとケイさんは考えています。 オブジェクト指向という名称は確かにアラン・ケイさんに由来するものです。しかし、C++とJavaで使われている現代のオブジェクト指向は当初のと結構違います。ケイさん自身もこれらの言語を後継者として認めないです。では、ケイさん曰くC++とJavaの親であるSimula 67という言語はどんな言語でしょうか。ここで、簡単なサンプルコードを見てみましょう。 Class Recta
はじめに 2020/8/12に発売されたImpractical Python Projects: Playful Programming Activities to Make You Smarterの日本語訳書である、「実用的でないPythonプログラミング」をひょんな事から献本していただく事になった。(訳者が同僚である) 実用的でないPythonプログラミング: 楽しくコードを書いて賢くなろう! 作者:ヴォーン,リー発売日: 2020/08/12メディア: 単行本 ありがちなプログラミング初学者向けの本から1段上がった中級者向けの良い本だと感じたので、当ブログでたまにやっている筆者、訳者に媚びを売るシリーズの一貫として、感想を記す。 書籍の概要 「実用的でないPythonプログラミング」は、想定する中級レベルのアルゴリズムの問題を例に取り、Pythonでの美しいコードの書き方や、コンピュ
歯車ってカッコいいですよね。大小ざまざまな歯車が組み合わさって連動して動いている時計のムーブメントなんて、いくらでも眺めていられる気がします。 記事の目的 歯車をプログラミングで描いてみます。歯車の種類はいろいろありますが、平歯車に絞ってチャレンジします。上の画像にあるような、我々一般人が歯車と聞いて最初に思い浮かぶタイプの歯車です。上のような、それっぽい感じの歯車が、それっぽくかみ合っているアニメーションを生成するところがゴールです。 一応世界標準のISO規格を意識した上で進めますが、準拠と言うにはほど遠い、「なんちゃって歯車」です。 歯車を作る まずは歯車を1つ描いてみることにします。 必須の3要素 さて、平歯車を作るにあたって、決めなければいけないところは多々ありますが、最も大事なのは以下の3点です。 m: モジュール(歯のサイズ) z: 歯の数 α: 圧力角 それぞれ順番に説明して
【はじめに】 本記事は 「機械学習をどう学んだか by 日経 xTECH ビジネスAI② Advent Calendar 2019」 の19日目になります。 おじさんSEの私がどうやって機械学習を勉強したかを記します。 きっかけは当時抱えていた分類課題において、「機械学習が使えるんじゃね?」というところから始まりました。 闇雲にやっていたので正直記憶は曖昧です。 経歴 プログラム歴は30年近くあります。 小学生の時に覚えたMS BASICから始まり、Z80アセンブラ、MC68000アセンブラ、FORTRAN、C(UNIX)、C++(Mac)、VB、Java(Android)、VB.NET、C#と触ってきました。 いろいろな言語に触れてきましたが、どれも極めるほどガッツリやっていたわけではありません。 機械学習に関しては20年以上前、いわゆる第二次AIブームの終わり頃に卒論のテーマでニューラ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く