タグ

数理論理学に関するh_youのブックマーク (2)

  • 数理論理学 - Wikipedia

    数理論理学(すうりろんりがく、英 : mathematical logic)または現代論理学[1][2]、記号論理学[1][2]、数学基礎論[3]、超数学[4]は、数学の分野の一つであり[4]、「数学の理論を展開する際にその骨格となる論理の構造を研究する分野」を指す[3][注 1]。数理論理学(数学基礎論)と密接に関連している分野としては計算機科学[4]や理論計算機科学などがある[注 2][注 3]。 数理論理学の主な目的は形式論理の数学への応用の探求や数学的な解析などであり、共通課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくにACM Classification(英語版)に現れるもの)

    数理論理学 - Wikipedia
  • ホーア論理 - Wikipedia

    この記事の正確性に疑問が呈されています。 問題箇所に信頼できる情報源を示して、記事の改善にご協力ください。議論はノートを参照してください。(2016年4月) 疑問点:トリプルの定義からすでに通常の定義と異なっている。例もおかしい ホーア論理(ホーアろんり、英: Hoare logic)とは、公理的意味論の立場でプログラムの正当性について厳密に推論するために第一階述語論理を拡張した形式論理の言語を言う。 プログラムの正しさを証明するためのロバート・フロイドによる流れ図に関する方法[1]を基に、計算機科学者のアントニー・ホーアによって提案された[2]。

    h_you
    h_you 2010/10/19
    数理論理学の厳密さでプログラムの正当性を論じるための論理的規則群を提供する
  • 1