用語「シグモイド関数(Sigmoid function)」について説明。座標点(0, 0.5)を基点(変曲点)として点対称となるS字型の滑らかな曲線で、「0」~「1」の間の値を返す、ニューラルネットワークの活性化関数を指す。 連載目次 用語解説 AI/機械学習のニューラルネットワークにおけるシグモイド関数(Sigmoid function、厳密には標準シグモイド関数:Standard sigmoid function)とは、あらゆる入力値を0.0~1.0の範囲の数値に変換して出力する関数である。 図1に示すように、座標点(0, 0.5)を基点(変曲点)として点対称で、S(=ς:シグマ)字型曲線のグラフになるため、「シグモイド関数」と呼ばれる。 ニューラルネットワークの基礎となっている情報処理モデル「パーセプトロン」(後日解説)では「ステップ関数」という活性化関数が用いられていた。しかし、「