近年、機械学習を使用した医療診断技術や顔認識・音声認識技術などが登場しており、患者のレントゲン写真から病気の種類を予想するシステムや、顔認証を行うシステムなどに利用されています。その一方で、システムが学習したデータを特定する攻撃手法も盛んに研究されており、データ・プライバシー侵害の懸念も広がっています。特に、システムの挙動から学習データを推論する「メンバーシップ推論攻撃(Membership Inference Attacks)」は数年前から多くの検証が行われており、現実的な脅威になる可能性が高まっています。 メンバーシップ推論攻撃は、攻撃対象の分類器(以下、標的分類器)に正常な入力データを与え、標的分類器から応答された分類結果を観察することで、入力したデータが分類器の学習データに含まれているか否か(=メンバーシップか否か)を推論します。仮に、近年プライバシーや自由の侵害などを理由に反対意