タグ

2017年3月14日のブックマーク (2件)

  • 勾配降下法の最適化アルゴリズムを概観する | POSTD

    (編注:2020/10/01、2016/07/29、いただいたフィードバックをもとに記事を修正いたしました。) 目次: さまざまな勾配降下法 バッチ勾配降下法 確率的勾配降下法 ミニバッチ勾配降下法 課題 勾配降下法を最適化するアルゴリズム Momentum(慣性) Nesterovの加速勾配降下法 Adagrad Adadelta RMSprop Adam アルゴリズムの可視化 どのオプティマイザを選ぶべき? SGDの並列化と分散化 Hogwild! Downpour SGD SGDのための遅延耐性アルゴリズム TensorFlow Elastic Averaging SGD 最適化されたSGDに対する更なる戦略 シャッフル学習とカリキュラム学習 バッチ正規化 早期終了 勾配ノイズ 結論 参考文献 勾配降下法は、最適化のための最も知られたアルゴリズムの1つです。これまではニューラルネット

    勾配降下法の最適化アルゴリズムを概観する | POSTD
  • ニューラルネットワークの動物園 : ニューラルネットワーク・アーキテクチャのチートシート(後編) | POSTD

    前編はこちら: ニューラルネットワークの動物園 : ニューラルネットワーク・アーキテクチャのチートシート(前編) 逆畳み込みネットワーク(DN) は、インバース・グラフィックス・ネットワーク(IGN)とも呼ばれていますが、畳み込みネットワークを逆転させたものになります。例えばネットワークに””という言葉を入力すれば、生成したらしき画像と物のの写真を比較しながらの画像を作成するよう訓練するようなイメージです。普通のCNNと同様にDNNをFFNNに組み合わせることができますが、新しい略語が見つかる時に線が描かれるところが特色です。深層逆畳み込みニューラルネットワークとでも呼べそうですが、FFNNの前後にDNNをつなげると、新しい名前をつけるにふさわしい別のアーキテクチャのネットワークができると主張できます。実際にはほとんどのアプリケーションにおいて、ネットワークにテキストに似たものが

    ニューラルネットワークの動物園 : ニューラルネットワーク・アーキテクチャのチートシート(後編) | POSTD