タグ

deeplearningとDeep Learningに関するhiroyadoraemonのブックマーク (4)

  • Hello Autoencoder — KiyuHub

    Hello Autoencoder 最近,身内でDeep Learningを題材に含んだ勉強会を行なっている. メインは専門である自然言語処理まわりだが, とりあえず実装(というよりnumpy)の導入になる上,結果を視覚化できることから, 画像データを利用したAutoencoderの実装について取り扱った. 軽い説明と共にコードと,色々な結果を Autoencoder Autoencoderとは,Neural Networkの特殊系で,基的には 入力層と出力層のユニット数が同じである. 教師信号として入力そのものを与える. という特徴を持つ. 入力と出力が共に4次元で,隠れ層が2次元なAutoencoderの図 Autoencoderは,入力の情報をを一度隠れ層の空間に写像(encode) したあと, 元の信号を復元(decode)するようなパラメータを学習する. 図のように,もしも隠れ

  • Deep Learning

    This domain may be for sale!

    Deep Learning
  • ディープラーニングでアスキーアートを作る - Qiita

    はじめまして。 業はアスキーアート (以下AA) 職人のOsciiArtといいます (業ではない)。 AlphaGo対イ・セドルの対局を見て、「僕もディープラーニングで神AA職人を倒したい!」と思い、pythonをインストールしてちょうど一年の成果を書いていきます。 コードはこちらにアップしてあります。 https://github.com/OsciiArt/DeepAA ここで扱うアスキーアートとは ここで扱うAAとは、 こういうの……↓ ではなく、こういうの……↓ でもなく、こういうの……↓ ともちょっと違って、こういうの……↓ ではもちろんなく、こういうのです。↓ このような、線画を文字を作って再現した「トレースAA」と呼ばれるタイプのAAをここでは扱います。 詳細はwikipediaの「アスキーアート」のページの「プロポーショナルフォント」の項を参照してください。 wikipe

    ディープラーニングでアスキーアートを作る - Qiita
  • Chainerで始めるニューラルネットワーク - Qiita

    Chainerは、Preferred Networksが開発したニューラルネットワークを実装するためのライブラリです。その特徴としては、以下のような点があります(ホームページより)。 高速: CUDAをサポートし、GPUを利用した高速な計算が可能 柔軟: 柔軟な記法により、畳み込み、リカレントなど、様々なタイプのニューラルネットを実装可能 直観的: ネットワーク構成を直観的に記述できる 個人的には、さらに一つ「インストールが簡単」というのも挙げたいと思います。 ディープラーニング系のフレームワークはどれもインストールが面倒なものが多いのですが、Chainerは依存ライブラリが少なく簡単に導入・・・できたんですが、1.5.0からCythonを使うようになりちょっと手間になりました。インストール方法については以下をご参照ください。 Mac Windows AWS 公式インストール情報 また、C

    Chainerで始めるニューラルネットワーク - Qiita
  • 1