ブックマーク / qiita.com/yuba (2)

  • read_csv でヘッダあり・なしCSVの読み込み - Qiita

    # ヘッダありCSV df = read_csv(filename, header=0) # ヘッダなしCSV df = read_csv(filename, header=None, names=['user_id', 'name']) リファレンスを読む pandasでCSV読み込みをするにあたって、ヘッダ行の扱い方の指示はリファレンスを読んでもいまひとつ理解しづらいものがあります。 header : int, list of int, default ‘infer’ Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identi

    read_csv でヘッダあり・なしCSVの読み込み - Qiita
    hujuu
    hujuu 2023/02/21
    “, header=0”
  • Numpyによる乱数生成まとめ - Qiita

    Python標準にも random というモジュールがあるが、ベクトル演算の可能な numpy のほうが「大量に乱数を生成してなんかの処理をする」という場合に高速に動く。あと分布関数が山ほど用意されている。 一様乱数 numpy.random.rand() で 0〜1 の一様乱数を生成する。引数を指定すれば複数の乱数を生成できる。乱数の範囲を変えたい場合は後からベクトル演算をすれば良い。 from numpy.random import * rand() # 0〜1の乱数を1個生成 rand(100) # 0〜1の乱数を100個生成 rand(10,10) # 0〜1の乱数で 10x10 の行列を生成 rand(100) * 40 + 30 # 30〜70の乱数を100個生成 from numpy.random import * """ 標準正規分布。いわゆるガウシアン。標準正規分布ならば

    Numpyによる乱数生成まとめ - Qiita
    hujuu
    hujuu 2022/03/31
  • 1