N-gramに関するikditのブックマーク (3)

  • N-gramモデルを利用したテキスト分析 ―インデックスページ―

    ↑ページ先頭 N-gramモデルを利用した事例 あるテキストから、任意のN-gram単位で共起頻度を集計し(N-gram統計を取る)、その結果を利用してテキストや言語の性格を見いだす研究によく利用される。 N-gramモデルで、ある文字列の直後に、特定の別な文字列は出現する確率を求める。 「an」の後には、必ず母音(aiueo)で始まる単語が結びつく確率が100% 「q」の後には、「u」が結びつく可能性が高い。 『論語』では「子」の後に「曰」が結びつく可能性が高い。 「百人一首」を平仮名に開いた場合の延べ数は、上位十五位までで全体の五割の使用量を占める(全部で六十八種の異なる平仮名(濁点含む)が使われている) 音声認識やOCR(原稿読みとりソフト)での利用 読みにくい文字でも、共起頻度の発生確率を考慮すれば、正しく原稿を可読出来る ↑ページ先頭 人文学的へのN-gramモデル導入 近藤みゆ

  • 第5回 N-gramのしくみ | gihyo.jp

    前回は形態素解析を使う検索エンジンのしくみについて説明しました。今回は、FINDSPOTで使用しているN-gramという検索エンジンのしくみについて説明します。 N-gramによる見出し語の切り出し 前回は、形態素解析による検索エンジンでは、検索可能な最小単位が分かち書きの切り分け単位となる点を説明しました。 一方、N-gramを使った検索エンジンでは、単純に文字の並びを見出し語としてインデックスを作成します。1文字を元にインデックスを作成する方法をユニグラム、2文字の並びを元にインデックスを作成する方法をバイグラム、3文字の並びを元にインデックスを作成する方法をトリグラムと呼んでいます。 1文字:ユニグラム 2文字:バイグラム 3文字:トリグラム N-gramによる見出し語の切り出しは、形態素解析のための文法解析を伴わないため、特定の自然言語に依存しないという特徴があります。 FINDS

    第5回 N-gramのしくみ | gihyo.jp
  • Ngram(N-gram)とは何か & 形態素解析との比較

    全て 1.このサイトについて 2.作品DB開発/運用 3.ホームページ制作技術 4.Perl 5.C言語 / C++ 6.検索エンジン&SEO 7.サッカー 8.自分のこと 9.Linux 10.旅行 11.思ったこと 12.パソコン 13.Berkeley DB 14.その他技術系 15.企画 16.スマートフォン 17.鑑賞 18.皆声.jpニュース 19.インターネット業界 20.運用マニュアル(自分用) 21.技術系以外実用書 22.料理 23.ALEXA 24.アニメ 25.会計 26.漫画 27.設計書 28.色々サイト作成 29.サーバー 30.自分専用 31.生活 32.OP/ED/PV 33.ゲーム 34.DB整備 35.新規開始作品紹介 36.英語圏の話題 37.大道芸 38.映画 39.PHP 40.ダイエット 41.Mac 42.JavaScript 43.MySQ

  • 1