タグ

ブックマーク / gri.jp (2)

  • 時系列データから大量の特徴量を生成するパッケージ「tsfresh」の使い方|CO-WRITE

    こんにちは!突然ですが、皆さんは下のような二種類の時系列データを判別できるような特徴量を抜き出したいときに何を考えますか?そしてどうやって特徴量を抽出しますか? 私はパッと見て次の手法を使えば特性が取り出せると思いました。 ピークの数 → k近傍法 ノイズの大きさ → 分散統計量 時系列方向で周期成分の大きさ → Wavelet変換 しかし、当然これだけでは十分な数の特性を網羅できていないでしょうし、適切な特性を抜き出すためにパラメータチューニングを行う必要があります(例えば、Wavelet変換であれば適切な基底関数を選ぶ必要があります)。 このように時系列データの特徴量エンジニアリングは調べることが無限にあり、どの特徴量を算出するかを考えているだけで日が暮れてしまいます。また、抜き出す特徴量が決まったとしてもモノによっては計算が複雑で実装に時間がかかってしまう場合もあります。 そんなとき

    時系列データから大量の特徴量を生成するパッケージ「tsfresh」の使い方|CO-WRITE
  • 「そうだ、数理最適化、やろう。」ってなった時にめっちゃ参考になったリンク集&参考書|CO-WRITE

    数理最適化案件とAI/機械学習案件とのアナロジー 「やってみなければわからない」中で僕たちDSはどうするか記事では表題に関して、脳筋系ゆるふわVTuberこと入社2年目DSの岡部がお送りいたします。(DS=データサイエンティスト) 発... ◆【理論・実践】(2021年時点で)オススメの参考書 最大のアップデートはこちらの2冊です。参考書は時代の流れに合わせていいものが出てくるものですね。もちろん過去の参考書にもいいものはたくさんありますが、日進月歩の分野である以上、新しいものに軍配が上がりやすい構図はあると思います。 しっかり学ぶ数理最適化 モデルからアルゴリズムまで Pythonではじめる数理最適化: ケーススタディでモデリングのスキルを身につけよう 以下それぞれの所感です 【理論】「最適化分野全般を知るための『最適解』」とも言われている教科書 僕が最適化にハマっていた当時は様々な

    「そうだ、数理最適化、やろう。」ってなった時にめっちゃ参考になったリンク集&参考書|CO-WRITE
  • 1