Track knowledge states of 1M+ students in the wild
4-4. 時系列データの解析 東京大学 数理・情報教育研究センター 東京大学 数理・情報教育研究センター 北川源四郎 2020 CC BY-NC-SA 東京大学 数理・情報教育研究センター 4-4 時系列データ解析 東京大学 数理・情報教育研究センター 2020年5月11日 4-4. 時系列データの解析 東京大学 数理・情報教育研究センター 東京大学 数理・情報教育研究センター 北川源四郎 2020 CC BY-NC-SA 東京大学 数理・情報教育研究センター 概要 • 本節では,まず時系列とは何か,時系列データ解析の⽬的は何か など時系列データ解析の概略について学びます. • 次に,時系列データがもつトレンド,周期性,季節性,ノイズに ついてその意味を学ぶとともに、移動平均,階差などによる情報 抽出の⽅法とスペクトや相関関数による特徴可視化を学びます. • さらに,時系列モデルを⽤いた予
数理・データサイエンス・AI教育強化拠点コンソーシアム MIセンターは、2022年度政府予算に盛り込まれた「数理・データサイエンス・AI教育の全国展開の推進」事業の東京大学における実施主体です。 同事業で選定された29大学(拠点校11大学、特定分野校18大学)のコンソーシアムの幹事校として、大学、産業界、研究機関等と幅広くネットワークを形成し、地域や分野における先進的教育モデルの拠点として、数理・データサイエンス・AIの実践的教育の全国普及に努めます。 同時に、この分野を牽引できる国際競争力のある人材および産学で活躍できるトップクラスのエキスパート人材の育成を目指します。 [コンソーシアムホームページ] 数理・データサイエンス・AIの活用事例動画 本動画集は数理・データサイエンス・AIリテラシーレベル教材の導入となるような活用事例を収集したものです。数理・データサイエンス・AIリテラシーレ
はじめに 論文ではなく、以下の記事から。 towardsdatascience.com splitting a time series without causing data leakage using nested cross-validation to obtain an unbiased estimate of error on an independent test set cross-validation with datasets that contain mltiple time series とのこと。時系列データからleakさせずにtest set, validation setをどう取れば良いか悩んでいて発見。 わかりやすくまとまっていてありがたい。 通常のnested cross validationについては以下を。 univprof.com blog.ameda
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く