タグ

ブックマーク / blog.moro-tyo.net (2)

  • 主成分分析、独立成分分析 - 机上の空論

    主成分分析(PCA)とは、特徴量の次元がバカでかくなりすぎた場合に行われる次元収縮の手法である。 参考: http://www-pse.cheme.kyoto-u.ac.jp/~kano/document/text-PCA.pdf http://aoki2.si.gunma-u.ac.jp/lecture/PCA/index.html 主成分分析は広く知られている手法で、統計学で習った人も多いかもしれない。 パターン認識の分野では、この主成分分析と組み合わせて、独立成分分析(ICA)がしばしば使われる。 独立成分分析と主成分分析の処理は似ている。だが、主成分分析は(主成分の)軸は直交しなければいけないのに対して、独立成分分析では軸は直交しなくてもよいという点が違う。独立成分分析では、データ分布の独立性を見るのだ。 独立成分分析は fastICA ( http://www.cis

  • [メモ] サポートベクターマシン(SVM) - 机上の空論

    サポートベクターマシン(以下 SVM) とは ・ニューラルネットワークの一種 ・教師ありクラスタリング SVM の基的な考え方 ・元々2クラスの線形分離手法として提案される ・単層パーセプトロンに似ているが、SVM はマージン最大化という手法をとっているのがポイント。 ・マージン最大化とは、超平面と学習データの隙間となるマージンをなるべく大きく取ろうというもの。 (ここでいう超平面とは、2つのクラスにぶった切る平面のこと) ・ちなみに超平面と、ちょうどマージンの分だけ離れている学習データをサポートベクトルという。 ・このマージン最大化という考えを取り入れることによって、テストデータの識別精度を高めている。 SVM の発展 ・線形分離不可能な問題への対応 - ソフトマージン(学習データが多少マージンにくい込んだり、反するクラスの空間にくい込んだりしても許す)で対応

  • 1