Graphillion は膨大な数のグラフに対して検索や最適化、列挙を行うための Python モジュールです。このビデオは Graphillion の概要を知るためのチュートリアルです。「フカシギの数え方」 http://youtu.be/Q4gTV4r0zRs の続編として作成されました。 Graphillion is a Python software package on search, optimization, and enumeration for a very large set of graphs. This video is a quick tutorial to learn what Graphillion is. The story follows our previous episode, "Let's count!" http://youtu.be/Q4gT
以前、1億桁のπの計算のためGMPを使いました。しかし、これには四則演算しか存在していなくて、通常の科学計算にはとても使えませんでした。 その後、調べていたらGMPを元に三角関数等をできるようにした、MPFR、MPCがありました。これら3つのライブラリは何とgccをビルドするのに必要なパッケージだとかで(何に使ってるんだ?)、最新のgccを使いたければインストールしておかないといけません。依存関係があり、GMP←MPFR←MPCという感じになるので、その順番にインストールしていかないといけません。大雑把に概要をいうと、以下のようになります。 ・GMP 任意精度算術演算ライブラリ ・MPFR こちらも任意精度の浮動小数点数演算ライブラリ(各種関数あり) ・MPC 複素数演算ライブラリ MPFRの簡単なサンプルを以下に示します。(これらのライブラリはCなのに注意) /* mpfrの使い方を調べ
プログラミング時に注意すべき点の一つに,計算精度の問題があります. たとえばC/C++だと,doubleで計算しても有効桁数は15桁程度(10進数で)しかありません.その結果,以下のような状況で間違った計算結果が出てしまいます. 取り扱う数値が15桁を越える場合 取り扱う数値が7桁を越える場合 たとえば8桁同士の掛け算が行われるとその結果は最大16桁になります.double型の変数には15桁程度の情報しか保存できないので,下位1桁の情報は棄てられます. 取り扱う数値の最大値と最小値に,15桁の以上の差がある場合 たとえばC言語のdouble型で(1.0 + 1e-16)を計算すると結果は 1.0 になります. これら計算精度の問題を避ける方法の一つにGMPというライブラリを使う方法があります。以下ポイントをまとめます。 GMPとは GMP(GNU Multiple Precision li
任意精度演算(にんいせいどえんざん)[1]とは、数値の精度を必要ならいくらでも伸ばしたりできるような演算システム(実際上は利用可能なメモリ容量に制限されるが)による演算である。 多倍長整数(たばいちょうせいすう)などを内部処理に利用し、必要な桁数の浮動小数点計算を行う。固定長の整数や一般的な固定精度の浮動小数点方式は、ハードウェアで高速に処理できるのに対し、任意精度演算はソフトウェアで実装され、重い処理を必要とする。十進の0.1を2進で表現しようとする場合のように、有限の桁数では表現し切れない場合もあることから、2進でなく十進で処理するものや、有理数演算を併用したりもする。 多倍長演算(たばいちょうえんざん)[2]とも言うが、プログラミング言語によっては、多倍長整数 (特に区別する場合は bigint などと言う) の名前が bignum であることもある。 最近のプログラミング言語の中に
あけましておめでとうございます。白ヤギの物理担当、シバタアキラ(@punkphysicist)です。 皆様はどんなお正月を過ごされましたか?日本の正月といえば、おせち、日本酒、おばあちゃん、そしてパズル、ですよね。私の正月はそんな感じでした。お節をたらふく食べ、美味しいお酒でほろ酔い気分になっている私の横で、黙々とおばあちゃんがパズルをやっているのに気づいたのです。部屋中をフワフワしている私とは全く対照的に、微動だにせずパズルを続けるおばあちゃん。御年迎えられると辛抱強さが半端ない。 そんなおばあちゃんがやっていたのはかわいいチョコレートのピースとは裏腹にこんな挑発的な文言の書かれたパズルです(この記事はアフィリエイトではありませんが、写真をクリックすると買えます) 何時間たっても答えが出ないおばあちゃん、辛抱強さは人一倍強いですが、私も何とか助けてあげたいと思いトライ。しかし日本酒が・・
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 発表資料 (2016/3/19[sat]) 確率・統計を学んだことがある方向けに、ベータ分布とは何かを解説してみた記事です。特にベイズ統計学を学んでいるとベータ分布が出現しますが、いまいちどんな事象が対応している分布かわかりにくいので、その辺りに迫ります。
[CEDEC 2014]ナムコ作品で見る乱数の歴史。「ゲーム世界を動かすサイコロの正体 〜 往年のナムコタイトルから学ぶ乱数の進化と応用」レポート ライター:箭本進一 神奈川のパシフィコ横浜で行われた,ゲーム開発者向けイベントCEDEC 2014の最終日である2014年9月4日,「ゲーム世界を動かすサイコロの正体 〜 往年のナムコタイトルから学ぶ乱数の進化と応用」という講演が行われた。 登壇したバンダイナムコスタジオ HE技術部 加来量一氏 この講演のユニークな点は,旧ナムコの作品を「乱数」という視点から振り返るということだ。バンダイナムコスタジオ HE技術部のプログラマーである加来量一氏は,旧ナムコの初期作品50本を解析し,それぞれの時代でどのような乱数が使われていたかを特定した。そこから見えてくる乱数技術改良の歴史を見ていくというのが,講義の主旨なのである。 1980年代のナムコアーケ
集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。 K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。 クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、Restart を押すと好きなパラメータで試すことができます。 こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。 (追記) HTML5 版の K-means 法を D3.js でビジュアライズしてみた も作成しました。Flash を表示できない環境ではそちらをご覧ください。 K-means 法とは K平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージに
“アルゴリズム”は、もっとも非人間的なものの代表だともいえる。ソーシャルメディアにとって、そのアルゴリズムが不可欠だというのは、実に皮肉めいている。 僕はこの間、グーグルがどうやってユーザーデータを集めているかについて書いた記事を掲載した(前編、後編)。今回は、著名なソーシャルメディアサイトが、ユーザーデータを活用する上でどのようにアルゴリズムを用いているのか、白日の下にさらそう。 ソーシャルメディアを成り立たせているのは人間の力だが、ユーザーが入力したデータを利用できる状態にする仕組みは、アルゴリズムによって作られている。現在活動している無数のソーシャルメディアサイトで実証済みのことだが、ユーザーの関与とアルゴリズムによる処理ルールの上手いバランスを見出すことは、とても難しくなりがちだ。これから紹介するアルゴリズムは、悪意のないユーザーと結びついて初めてうまくいくものだ。 人気ソーシャル
English Version News: MTToolBox をGitHubで公開しました。(2013/10/04) TinyMTをリリースしました。 (2011/06/20) MTGPをリリースしました。(2009/11/17) SIMD-oriented Fast Mersenne Twister (SFMT) をリリースしました。 SFMTはオリジナルのMersenne Twisterより約二倍速く、 よりよい均等分布特性を持ち、零超過初期状態からの回復も高速です。 SFMTのページを見てください。 (2007/1/31) お願い:使う時にemailを一通下されば、 今後の改良のはげみになります。 どんなささいな問題点でも、見つけ次第御連絡下さい。 m-mat @ math.sci.hiroshima-u.ac.jp (このメールアドレスは スペースを抜いて手で打ち直してください)
浮動小数点数(ふどうしょうすうてんすう、英: floating-point number)は、実数をコンピュータで処理(演算や記憶、通信)するために有限桁の小数で近似値として扱う方式であり[1]、コンピュータの数値表現として広く用いられている。多くの場合、符号部、固定長の指数部、固定長の仮数部、の3つの部分を組み合わせて、数値を表現する。 この節はパターソンらの記述に基づく[1]。 実数は0以上かつ1以下のような有限の範囲でも、無限個の値(種類)が存在するため、コンピュータでは妥当なビット数で有限個の値(種類)の近似値で扱う必要がある。 実数-1/3は10進数表現では無限小数となるが、有限桁の小数で近似値を表記できる。下の例では10進数での4桁としている。 -1/3 -1 x 0.33333333333333... -1 x 0.3333 x 100 -1 x 3.333 x 10-1 下
平均は同じであるが標準偏差が大きく異なるデータのヒストグラムの例。赤で示されたデータの方が青で示されたデータよりも標準偏差が小さい。 平均 0, 標準偏差 σ の正規分布の確率密度関数。この分布に従う確率変数が 0 ± σ の間に値をとる確率はおよそ 68% であることが読み取れる。 標準偏差(ひょうじゅんへんさ、(英: standard deviation, SD)とは、データや確率変数の、平均値からの散らばり具合(ばらつき)を表す指標の一つである。偏差ベクトルと、値が標準偏差のみであるベクトルは、ユークリッドノルムが等しくなる。 標準偏差を2乗したのが分散であり、従って、標準偏差は分散の非負の平方根である[1]。標準偏差が 0 であることは、データの値が全て等しいことと同値である。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。 二乗平均平方根 (RMS
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く