Workshop description This is an intermediate/advanced R course Appropriate for those with basic knowledge of R This is not a statistics course! Learning objectives: Learn the R formula interface Specify factor contrasts to test specific hypotheses Perform model comparisons Run and interpret variety of regression models in R Materials and Setup Lab computer users: Log in using the user name and pas
表示中のページから https://rdrr.io/a/cran/mlVAR/man/mlVAR0.html にリダイレクトしようとしています。 このページにリダイレクトしないようにする場合は、前のページに戻ってください。
The brms package provides an interface to fit Bayesian generalized (non-)linear multivariate multilevel models using Stan, which is a C++ package for performing full Bayesian inference (see https://mc-stan.org/). The formula syntax is very similar to that of the package lme4 to provide a familiar and simple interface for performing regression analyses. A wide range of response distributions are su
[This article was first published on Data, Evidence, and Policy - Jared Knowles, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here) Want to share your content on R-bloggers? click here if you have a blog, or here if you don't. Getting Started with Multilevel Modeling in R Jared E. Knowles Introduction Analysts dealing with grouped data and complex hie
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く