はじめに 実験でも数値計算でも、観測に誤差が伴うものをグラフにする時にはエラーバー(誤差棒)をつけると思います。エラーバーのつけ方には流儀がありますが、とりあえず1シグマ、つまり「誤差の乗り方がガウス分布だと仮定した時の標準偏差」をエラーバーとすることが多いです。 で、エラーバーは1シグマなので、「真の値をそのエラーバーの中に含む確率」が68%です。つまり観測点の3つに1つは「真の値」がエラーバーの範囲外にあることになります。なお、ここでは「真の値」を「観測を十分な回数繰り返した時に収束する値」のこととします。 さて、発表を見ていて、たまに「ん?」と思うようなグラフを見かけます。以下では、そんな「ん?」なグラフの実例と、その原因について見てみようと思います。 ケース1:正しい誤差棒 入力値$x$に対して、観測値$y$が$y=x$となる単純な系を考えましょう。ただし、観測するたびに誤差$\v