基本的なデータ構造であるヒープについて、概要、計算量と実装、そして最もシンプルな応用であるヒープソートを紹介します。MITが講義や資料を公開しているMIT OpenCourseWareのアルゴリズムとデータ構造の講義 が非常にわかりやすかったので、その内容に沿ってまとめました。この記事ではHeaps and Heap Sortの内容を以下の順序で解説します。 ヒープの概要ヒープの表現ヒープの構築ヒープの計算量ヒープの実装ヒープソート1. ヒープの概要ヒープ (heap) は優先度付きキュー (priority queue) の実装の1つです。優先度付きキューは集合 (set) を扱うデータ型で、集合に含まれる要素が何らかの優先度 (priority) 順に取り出されるという特徴を持っています。学会のポスター発表を回るときや、旅行先での観光地巡りでは、優先度に基づいて要素を取り出すことが重要
In this free email course, I'll teach you the right way of thinking to break down tricky algorithmic coding interview questions. 7 days. One short-but-helpful email a day. Unsubscribe whenever. No CS degree necessary. The idea behind big O notation Big O notation is the language we use for talking about how long an algorithm takes to run. It's how we compare the efficiency of different approaches
スターリングの公式はランダウの記号を用いてと書くこともできる。 ランダウの記号(ランダウのきごう、英: Landau symbol)は、主に関数の極限における漸近的な挙動を比較するときに用いられる記法である。英語圏では一般的にビッグ・オー(Big O)と呼ばれる。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (数字の0ではない)を用いることから(バッハマン-ランダウの)O-記法 (Bachmann-Landau O-notation[1])などともいう。 記号 O はドイツ語のOrdnungの頭字にちなむ[2]。 なおここでいうランダウはエトムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用い
線形合同法(せんけいごうどうほう、英: Linear congruential generators, LCGs)とは、擬似乱数列の生成式の一つ。 漸化式 によって与えられる。A、B、Mは定数で、M>A、M>B、A>0、B≥0である。 上の式で、が、乱数の種であり、これに数を代入すると、が得られる。さらにを生成する場合には、を使う。以後、同様に行う。 例えば、定数をそれぞれ、A=3、B=5、M=13、乱数の種=8とすると、(上の式においてはXn+1を左辺に置いたが、今回は便宜上、右辺に置く) 次に乱数を生成する際は前回生成された乱数(今回は3)を使って、 以下、同じように、 となる。 生成される乱数列は周期性を持ち、上の例では8→3→1→8→3→……、を繰り返す。この周期は最大でMであり、以下の条件が満たされたときに最大周期Mをもつ。 BとMが互いに素である。 A-1が、Mの持つ全ての素因
クイックソート(英: quicksort)は、1960年にアントニー・ホーアが開発したソートのアルゴリズム。分割統治法の一種。 個のデータをソートする際の最良計算量および平均計算量は (ランダウの記号)である。他のソート法と比べて一般的に最も高速だと言われている[2]が、対象のデータの並びやデータの数によっては必ずしも速いわけではなく、最悪の計算量はである。安定ソートではない。 クイックソートは以下の手順で行われる。 ピボットの選択:適当な値(ピボット(英語版)という)を境界値として選択する 配列の分割:ピボット未満の要素を配列の先頭側に集め、ピボット未満の要素のみを含む区間とそれ以外に分割する 再帰:分割された区間に対し、再びピボットの選択と分割を行う ソート終了:分割区間が整列済みなら再帰を打ち切る 配列の分割方法の一例として、以下のようなものが考えられる: 配列要素からピボット P
Hi there! This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science. When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn't be stumped when asked about them. Over the last few years, I
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Self-balancing binary search tree" – news · newspapers · books · scholar · JSTOR (November 2010) (Learn how and when to remove this message) An example of an unbalanced tree; following the path from the
Warning: This is the blog I wrote as a kid. Most of what is written here is probably wrong. Sat, Sep 17, 2016 What is a skip list? In short, skip lists are a linked-list-like structure which allows for fast search. It consists of a base list holding the elements, together with a tower of lists maintaining a linked hierarchy of subsequences, each skipping over fewer elements. Skip list is a wonderf
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く