2019年2月12日のブックマーク (1件)

  • 特徴量選択の今とこれから - 学習する天然ニューラルネット

    特徴量選択とは 特徴量選択の難しさ 特徴量選択の手法の大別 教師ありの特徴量選択 filter method 単変量とクラスラベルの関連性を上げる 関係性を上げて冗長性を下げる 関係性を上げて多様性を上げる wrapper method Forward SelectionとBackward Elimination 遺伝的アルゴリズムと粒子群最適化 その他のwrapper method embedding method L1正則化 Regularized tree 特徴量選択のこれから 超高次元データと特徴量選択のアンサンブル 不均衡データにおける特徴量 オンライン特徴量選択 深層学習を用いた特徴量選択 最後に 特徴量選択とは 特徴量選択(Feature Selection, 変数選択とも)はデータサイエンスにおいて非常に重要である。 例えば、製造業において欠陥品を判別するタスクを考えてみよ

    特徴量選択の今とこれから - 学習する天然ニューラルネット