タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとkd-treeに関するkamipoのブックマーク (2)

  • kd木 - Wikipedia

    3次元のkd木。根セル(白)をまず2つの部分セルに分割(赤)し、それぞれをさらに2つに分割(緑)している。最後に4つのセルそれぞれを2つに分割(青)している。それ以上の分割はされていないので、最終的にできた8つのセルを葉セルと呼ぶ。黄色の球は木の頂点を表している。 kd木(英: kd-tree, k-dimensional tree)は、k次元のユークリッド空間にある点を分類する空間分割データ構造である。kd木は、多次元探索鍵を使った探索(例えば、範囲探索や最近傍探索)などの用途に使われるデータ構造である。kd木はBSP木の特殊ケースである。 kd木は、座標軸の1つに垂直な平面だけを使って分割を行う。BSP木では分割平面の角度は任意である。さらに一般的には、kd木の根ノードから葉ノードまでの各ノードには1つの点が格納される[1]。この点もBSP木とは異なり、BSP木では葉ノードのみが点(ま

    kd木 - Wikipedia
  • kd-tree Visualization(2) - agwの日記

    先日のエントリにて、kd木を紹介しました。前回はアルゴリズム Cに倣って、要素の追加のみでkd木を構築してみました。 繰り返しになりますが、一般的に要素の追加のみでkd木を構築するとバランスの悪い木となることが知られています。先日のエントリで作成したkd木を可視化したものは以下のようなものでした。 同じく、木構造として可視化したものは以下のようなものでした。 さて、では何故均衡の取れない木が構築されてしまうのでしょう? 座標群の初めの点、1番の点を挿入した直後の状態を可視してみましょう。 この可視と先ほどの木構造としての可視を比較すると不均衡な木が構築される理由がより明らかとなります。木構造の可視にて1番の左側にぶら下がっている2番以下の座標群は、この可視では1番によって空間分割された領域の下側、つまり、y座標値がより小さい側に分布しています。 同様に、木構造にて1番の右側にぶら下がってい

    kd-tree Visualization(2) - agwの日記
  • 1