タグ

マシンラーニングに関するkana321のブックマーク (2)

  • NIPS2010における発表論文に見る、機械学習最前線 | gihyo.jp

    なお、劣モジュラー性についてさらに知りたい方は、チュートリアル[3]が参考になります。 昨年のNIPSでの動向 それでは、昨年のNIPSでの動向を見てみましょう。 Bach[4]は、L∞ノルムが劣モジュラー関数のロヴァース拡張から導出できることを示すことにより, 劣モジュラー性とスパース性との関係を示しました。さらに, この洞察から教師あり学習で用いることができる新しい3つのノルムを提案しました。また、勾配法や近接法が劣モジュラー関数最適化に使えることを示し, 実験によりL1,とL2ノルムを用いるより精度が良いことを示しました。 Stobbe and Krause[5]は、劣モジュラー関数を凹関数の和として分解できる新しいクラス(decomposable submodular function)を定義し, カット問題, マルコフ確率場の最適化, 集合被覆問題などがその新しいクラスの最小化問

    NIPS2010における発表論文に見る、機械学習最前線 | gihyo.jp
    kana321
    kana321 2015/01/06
    NIPS2010における発表論文に見る,機械学習最前線
  • 第2回 確率の初歩 | gihyo.jp

    今回は、機械学習で使う「確率」のお話です。 確率は、統計的な機械学習のもっとも重要な基礎知識です。とはいえ、確率についてゼロから説明するというのは紙数的にも厳しいため、高校の確率を少し憶えているくらい(期待値や標準偏差など)を前提とし、「⁠高校の確率」と「機械学習の確率」の質的な相違点について、少し丁寧に見ていく、という形で進めていきます。 機械学習と確率 最初に、機械学習にとって確率はどういう役割なのかを確認しておきましょう。 実のところ、機械学習に確率が必須というわけではありません。ニューラルネットワークやサポートベクターマシンなどの有名な手法も「確率を用いない機械学習」ですし、その他にも数多くの手法があります。しかし、「⁠確率を用いない機械学習」の多くは、「⁠結果のランキングを作りづらい(評価値の大小に意味がない⁠)⁠」⁠「⁠条件が異なる場合の結果を比較できない」などの欠点がありま

    第2回 確率の初歩 | gihyo.jp
  • 1