エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
第2回 確率の初歩 | gihyo.jp
今回は、機械学習で使う「確率」のお話です。 確率は、統計的な機械学習のもっとも重要な基礎知識です。... 今回は、機械学習で使う「確率」のお話です。 確率は、統計的な機械学習のもっとも重要な基礎知識です。とはいえ、確率についてゼロから説明するというのは紙数的にも厳しいため、高校の確率を少し憶えているくらい(期待値や標準偏差など)を前提とし、「高校の確率」と「機械学習の確率」の本質的な相違点について、少し丁寧に見ていく、という形で進めていきます。 機械学習と確率 最初に、機械学習にとって確率はどういう役割なのかを確認しておきましょう。 実のところ、機械学習に確率が必須というわけではありません。ニューラルネットワークやサポートベクターマシンなどの有名な手法も「確率を用いない機械学習」ですし、その他にも数多くの手法があります。しかし、「確率を用いない機械学習」の多くは、「結果のランキングを作りづらい(評価値の大小に意味がない)」「条件が異なる場合の結果を比較できない」などの欠点がありま
2016/03/04 リンク