タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Programmingとprogrammingとopencvに関するkana321のブックマーク (11)

  • ご注文はDeep Learningですか? - kivantium活動日記

    先日Deep Learningでラブライブ!キャラを識別するという記事が話題になっていました。この記事で紹介されている SIG2D 2014を知り合いから貸してもらったので参考にしながら、ご注文は機械学習ですか?のDeep Learning版を作ってみました。 Caffeなど必要なソフトのインストール Ubuntu 14.04の場合は過去記事を参照してください。これ以外にもpython-opencvなどを使いますが、依存関係の全ては把握できていないのでエラーが出たら適宜インストールしてください。 データの準備 Deep Learningでは大量の学習データが必要になると言われているので、まずは大量のデータを用意します。参考記事では6000枚のラブライブ画像を使ったということなので対抗して12000枚以上のごちうさ画像を用意したいと思います。それだけのデータを手動で分類するとそれだけで時間が

    ご注文はDeep Learningですか? - kivantium活動日記
  • 第2回 OpenCVを使ってみよう | gihyo.jp

    第1回では、画像認識の概要や基原理、実例などを紹介しました。第2回の今回は、これから皆さんが画像認識のプログラムを組んでいく上で必要なOpenCVというツールについて紹介します。 OpenCVとは? OpenCVは正式名称を"Intel Open Source Computer Vision Library"と言い、その名のとおりインテル社が開発したオープンソースのC/C++ライブラリ集で、コンピュータ・ビジョンに必要な各種機能がパッケージされています。 具体的には、だいたい以下の処理を行う関数群が用意されています。 線形代数や統計処理など、コンピュータビジョンに必要な各種数学関数 直線や曲線、テキストなど画像への描画関数 OpenCVで使用したデータを読み込み/保存するための関数 エッジ等の特徴抽出や画像の幾何変換、カラー処理等々の画像処理関数 物体追跡や動き推定などの動画像処理用関数

    第2回 OpenCVを使ってみよう | gihyo.jp
  • ゆゆ式を無限に楽しみたかった話 〜 ゆゆ式 Advent Calendar 2014 20日目 〜 - しゅみは人間の分析です

    ある日のこと、後輩たちがこんなことを言いました。 「ゆゆ式のコマをランダムに並びかえたら無限にゆゆ式が楽しめるのでは?」 真面目に計算してみると、10の15乗くらいの組み合わせができることがわかりました。 この記事ゆゆ式アドベントカレンダー20日目は、そんな無限にゆゆ式をたのしむためのシステムを真面目に作ってみた話をします。 コマの切り出し 漫画のコマを並び替えるためには、コマがバラバラな画像として存在していなければなりません。 なので、まずは自炊で電子化された書籍をコマの線にそって切り出していく処理を自動化することにしました。 上の図がふつうの4コマの1ページですね。これの枠線を識別して、1ページから8枚のコマを取り出してくる方法を考えます。 ハフ変換で直線検出 OpenCVという画像処理のライブラリに直線を検出するツールがあったので、まずこれを試してみました。 が、結果はこのとおり。

    ゆゆ式を無限に楽しみたかった話 〜 ゆゆ式 Advent Calendar 2014 20日目 〜 - しゅみは人間の分析です
  • iOSと機械学習 - その後のその後

    ビッグデータとかの機械学習隆盛の背景にある文脈や、その拠り所となるコンピュータの処理性能から考えても「モバイルデバイス向けOSと機械学習を紐付けて考えようとする」ことはそもそもあまり筋がよろしくない・・・とは思うのですが、やはり長くiOSだけにコミットしてきた身としては、新たに興味を持っている機械学習という分野と、勝手知ったるiOSという分野の交差点はないのかなと考えずにはいられないわけでして。。 そんなわけで、「iOS と機械学習」について雑多な切り口から調べてみました。 iOSで使える機械学習ライブラリ DeepBeliefSDK コンボリューショナルニューラルネットワークを用いた画像認識ライブラリ。iOSとかのモバイルデバイスで処理できるよう、高度に最適化してある、OpenCVと一緒に使うのも簡単、とのこと。 https://github.com/jetpacapp/DeepBeli

    iOSと機械学習 - その後のその後
  • ExcelからOpenCVで画像を開く - wildpieの日記

    はじめに Excelにはプログラミングのできる環境としてVBAが用意されています。ただあまり使いやすいとはいえないので、別の方法があるか調べてみました。 COMというインターフェースを使うとVisual Studioで作成したDLLを呼べるみたいなので試してみます。 実装 ここではC++/CLIのOpenCVで取得したカメラ画像をExcelで表示するプログラムを作ってみます。VBAから見えてほしいインターフェースは、画像の座標を入れるとRGBの値が返ってくるものです。これを実装すると以下のようになります。 参考 Extend your VBA code with C#, VB.Net or C++/CLI | Pragmateek #pragma once using namespace System::Runtime::InteropServices; #include <opencv2

    ExcelからOpenCVで画像を開く - wildpieの日記
  • 第3回 オブジェクト検出してみよう | gihyo.jp

    第1回、第2回と画像認識の基礎とOpenCVについて紹介してきました。第3回目の今回は、いよいよ連載の目玉であるOpenCVを使ったオブジェクト検出に挑戦してみます。 オブジェクト検出の仕組み 基原理のおさらい オブジェクト検出のプログラムを書き始める前に、そもそもどんな仕組みでオブジェクト検出を行っているのかを理解しましょう。 第1回では画像認識の原理として、学習フェーズと認識フェーズがあることを説明しましたが、OpenCVに実装されているオブジェクト検出プログラムもこの流れに従います。つまり、画像から特徴量を抽出し、学習アルゴリズムによってオブジェクトを学習します(詳しくは第1回を参照してください⁠)⁠。 図1 画像認識の流れ OpenCVに実装されているオブジェクト検出プログラムは、Paul Violaらのオブジェクト検出の研究[1]をベースに、Rainer Lienhartらが

    第3回 オブジェクト検出してみよう | gihyo.jp
  • 第4回 オブジェクト検出器の作成方法 | gihyo.jp

    お久しぶりです。私事でなかなか執筆の時間がとれず、前回の掲載から長く時間が空いてしまい申し訳ありませんでした。皆さんから寄せられたコメントには非常に励まされました。 というわけで、今回はいよいよ最終回です。前回はオブジェクト検出器を使って顔を検出するところまで行いました。今回は、オリジナルオブジェクト検出器を作成してみます。 今回作成するプログラムのソースコードは、こちらから一括してダウンロードすることができます。 Data.zip 学習の流れと仕組み 学習の流れ 前回のおさらいになりますが、オブジェクト検出器は機械学習という方法を通して作成されます。つまり、コンピュータプログラムに検出したいオブジェクトの画像(正解画像)とそうでない画像(非正解画像)を与えることで、オブジェクトが含まれている画像の傾向というのをコンピュータに覚えさせていきます。 学習の流れを簡単にまとめると以下の通りです

    第4回 オブジェクト検出器の作成方法 | gihyo.jp
  • 第1回 画像認識の基本を知ろう | gihyo.jp

    この連載では、この表で言う画像認識技術を主に扱いますが、どの技術も非常に活発に研究されており、様々な分野で実用化されています。 画像認識・理解の基原理 画像認識の基原理 画像認識は、学習のフェーズと認識のフェーズの2つからなります。学習のフェーズでは、コンピュータに認識させたい対象画像を学習させる処理を行い、認識のフェーズではコンピュータに入力画像が学習した対象かどうかを判定させます。 図5 学習と認識の流れ 学習フェーズ 学習のフェーズでは、まず画像になんらかの処理を施して、ピクセルのデータ列から、より学習に適したデータ列(特徴量データ)へと変換を行います。 次に変換されたデータを、機械学習と呼ばれるアプローチを用いてコンピュータに学習させます。機械学習とは、その名の通り人間が行っているような学習の仕組みをコンピュータに持たせるための技術です。例えば人間は、初めて見る人の顔画像でも、

    第1回 画像認識の基本を知ろう | gihyo.jp
  • OpenCVで学ぶ画像認識 記事一覧 | gihyo.jp

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    OpenCVで学ぶ画像認識 記事一覧 | gihyo.jp
  • 数独を解く(画像解析) - cuspy diary

    画像として与えられた数独を解きます。 新聞に掲載されていたこの問題をOpenCVを使って画像解析する。(画像が斜めなのはワザとです) グレースケール変換画像解析の前処理として、まずグレースケールに変換し、ガウシアンフィルタをかけてぼかします。ガウシアンフィルタをかける事で、安定した二値化画像が得られます。 二値化次に二値化を行います。 二値化には、普通の方法、大津さんの手法、適応的二値化、などさまざまな手法が在ります。いろいろ試した所、適応的二値化(Adaptive Threshold)が最も数独の認識に適していることが解りました。 適応的二値化(Adaptive Threshold)であれば、影になってしまった部分も上手く処理できます。 膨張処理次に、数独の盤面の外枠を認識を行います。 二値化の影響で枠線が途切れてしまう可能性がありますので、膨張処理(dilate)を行います。 (膨張処

  • 1