2014/01/30 筑波大学情報システム特別講義Dの講義資料です。 join関係はNAIST時代の宮崎先生のデータ工学Ⅱの内容を参考にしてます。 animation有効なビデオはこちら https://vimeo.com/85598907Read less
HadoopとMahoutにより、ビッグデータでも機械学習を行うことができます。Mahoutで実装されている手法は、全て分散処理できるアルゴリズムということになります。Mahoutで実装されているアルゴリズムは、ここに列挙されています。論文としても、2006年に「Map-Reduce for Machine Learning on Multicore」としていくつかのアルゴリズムが紹介されています。 そこで今回は、(何番煎じか分かりませんが自分の理解のためにも)この論文で紹介されているアルゴリズムと、どうやって分散処理するのかを簡単にメモしておきたいと思います。計算するべき統計量が、summation form(足し算で表現できる形)になっているかどうかが、重要なポイントです。なってない場合は、”うまく”MapReduceの形にバラす必要があります。 ※例によって、間違いがあった場合は随時
情報と技術は未来をどう変えるのか──IT、スマートデバイス、ロボット、電子工作、メディアのアーキテクチャ Google勤務のKazunori SatoさんがGoogle+に簡潔な解説をポストしてくれています。 ポスト1 BigQueryが一般公開されました!数100億件の全検索が数十秒で完了する超並列クエリサービスで、MapReduceと並びGoogleの根幹を支える虎の子技術です。 Google BigQuery brings Big Data analytics to all businesses - Google Developers Blog ポスト2 BigQueryプチ解説:BigQueryはGoogle社内では「Dremel」と呼ばれる超並列クエリインフラを利用した一般向けサービスです。DremelはSybase IQやOracle Exadataと同様のColumar DB
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く