タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

pythonとPythonとOpenCVに関するkana321のブックマーク (5)

  • ご注文はDeep Learningですか? - kivantium活動日記

    先日Deep Learningでラブライブ!キャラを識別するという記事が話題になっていました。この記事で紹介されている SIG2D 2014を知り合いから貸してもらったので参考にしながら、ご注文は機械学習ですか?のDeep Learning版を作ってみました。 Caffeなど必要なソフトのインストール Ubuntu 14.04の場合は過去記事を参照してください。これ以外にもpython-opencvなどを使いますが、依存関係の全ては把握できていないのでエラーが出たら適宜インストールしてください。 データの準備 Deep Learningでは大量の学習データが必要になると言われているので、まずは大量のデータを用意します。参考記事では6000枚のラブライブ画像を使ったということなので対抗して12000枚以上のごちうさ画像を用意したいと思います。それだけのデータを手動で分類するとそれだけで時間が

    ご注文はDeep Learningですか? - kivantium活動日記
  • FF10の雷除けを自動化した話 - panchiga's blog

    これはAizu Advent Calender 2014の9日目の記事です! Aizu Advent Calender 2014 前の人: @MiZuKi_Sonoko mizukindevelop: Hackathonに参加しよう {Aizu Advent Calendar 2014 [8]日目} 次の人: @a_r_g_v はじめに FF10はみんな知ってるよね? FF10には七曜の武器っていう伝説の武器みたいなものがあって、入手方法がゲーム中のミニゲームをなんかすごいやるみたいな感じ。 例) サブイベントの「とれとれチョコボ」をタイム0:0:0でクリアする(ティーダ) サブイベントの「サボテンダーの里」をクリアする(リュック) 召喚獣バトルに全部勝利する(ユウナ) その中で巨乳おっぱいさんルールーの「雷平原のサブイベント・雷除けを200回連続で成功する」というものがある。 おっぱいさ

    FF10の雷除けを自動化した話 - panchiga's blog
  • 実践 コンピュータビジョン

    コンピュータビジョンの理論とアルゴリズムを基礎から学べる実践的な入門書。理論の説明にとどまらず、ベクトル演算や行列演算を駆使したサンプルを示しながら物体認識、3次元復元、ステレオ画像、拡張現実感、その他の応用について解説します。サンプルプログラムはPython 2.7で書かれています。OpenCVを使うだけではコンピュータビジョンの質を理解できません。forループでピクセルを操作し行列を計算する時代でもありません。Pythonの数値演算ライブラリを使えば、ほどよい粒度でコンピュータビジョンの基礎を学べます。各章末には演習問題が用意してあります。演習問題を解くことで自分がその章で何を学んだのか、また自分の理解度を確認できます。 ●書で扱うサンプルプログラムの説明(サンプルコードは「関連ファイル」タブページからダウンロード可)。 翻訳者の相川氏のブログには、書の追加情報や関連する技術情報

    実践 コンピュータビジョン
  • ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term

    ねこと画像処理。 (みかん – 吉祥寺 きゃりこ) 前回の ねこと画像処理 part 2 – 検出 では画像内のの顔を検出する方法を紹介しましたが、今回はディープラーニングの技術を用いての品種を識別したいと思います。 学習データ ねこと画像処理 part 1 – 素材集めでは、自分で撮影した写真を学習データとして使うと書いたのですが、都内のカフェ等で出会えるに限ってしまうと品種の偏りが大きくなってしまうので、ここではしぶしぶ研究用のデータセットを使うことにします。。ただ、Shiba Inuがあるのに日が誇るMike Nekoが含まれていないのでデータセットとしての品質は悪いと思います。 The Oxford-IIIT-Pet dataset オックスフォード大学が公開している動物画像のデータセットです。その内画像は2400枚、クラス数は12で1クラスにつき200枚あります。今

    ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term
  • セクシー女優で学ぶ画像分類入門

    6/8 (水) 09:45~10:55メイン会場 講師:牛久 祥孝 氏 (オムロンサイニックエックス株式会社) 概要: 2017年に機械翻訳を対象として提案されたTransformerは、従来の畳込みや再帰を排して自己注意機構を活用したニューラルネットワークである。2019年頃からコンピュータビジョン分野でも急速に応用が進んでおり、より柔軟かつ高精度なネットワーク構造としての地位を確立しつつある。チュートリアルでは、Transformerおよびその周辺のネットワーク構造について、コンピュータビジョンへの応用を中心とした最前線を概説する。

    セクシー女優で学ぶ画像分類入門
  • 1