タグ

algorithmとtechnologyに関するkataringのブックマーク (2)

  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • Google Japan Blog: Google検索ランキングの背景にある技術

    毎週月曜日のエンジニアリングブログの4回目です。今週も検索テクノロジーについて、過去に米国のブログにポストされたもの を日語でお届けします。 前回の投稿で、私は Google 検索ランキングの背景にある理念を紹介しました。今回はサーチクオリティについてお話しする努力の一環として、Google 検索ランキングの背景にある技術についてもう少し詳しく説明したいと思います。私たちのランキングシステムのコアテクノロジーは、情報検索( Information Retrieval または IR )という学問分野に由来しています。IR コミュニティーは、すでに 50 年近くにわたって検索について研究しています。ページのランキングには、単語の登場頻度のような単語の統計的特徴が用いられています※1。私たちは IR という強固な基礎の上に、リンク、ページ構造、その他多くの革新的技術を用いて最高レベルのシステム

    Google Japan Blog: Google検索ランキングの背景にある技術
  • 1