タグ

algorithmに関するkentaromasudaのブックマーク (12)

  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意していま

  • ぜひ押さえておきたいコンピューターサイエンスの教科書

    僕はバイオインフォマティクスという生物と情報の融合分野で研究を行っています。東大の理学部情報科学科にいた頃は同僚のマニアックな知識に驚かされたものですが、そのような計算機専門の世界から一歩外に出ると、それが非常に希有な環境だったことに気が付きました。外の世界では、メモリとディスクの違いから、オートマトン、計算量の概念など、コンピューターサイエンスの基礎知識はあまり知られていませんでした。コンピューターサイエンスを学び始めたばかりの生物系の人と話をしているうちに、僕が学部時代に受けた教育のうち、彼らに欠けている知識についても具体的にわかるようになってきました。 バイオインフォマティクスに限らず、今後コンピュータを専門としていない人がコンピューターサイエンスについて学ぶ機会はますます多くなると思われます。そこで、これからコンピューターサイエンスを学ぼうとする人の手助けとなるように、基礎となる参

  • 第6回 N-gramと形態素解析との比較 | gihyo.jp

    これまでに、N-gramと形態素解析の2つの検索エンジンの、見出し語の切り出し方法を説明しました。今回は、2つの見出し語の切り出し方法を比較し、それぞれの得意な点、不得意な点を明らかにしていきます。 2つの手法の概要 はじめに、2つの手法をおさらいしてみます。 形態素解析 検索対象のテキストを形態素解析を行い分かち書きを行う 分かち書きした単位を見出し語として転置インデックスを作成する 転置インデックスを元に検索を行う N-gram 検索対象のテキストをN文字単位の文字列片に分解する 分解した文字列片を見出し語として転置インデックスを作成する 検索語をN文字単位の文字列片に分け検索を行う 文字列の出現位置情報を利用すれば、漏れのない完全一致の検索が可能 大きな違いは、「⁠転置インデックスの見出し語をどのように作るか」というプロセスが異なる点です。形態素解析は構文解析を行って分かち書きを行う

    第6回 N-gramと形態素解析との比較 | gihyo.jp
  • フォント同士を交配させて新しいフォントを作る「genoTyp」が面白い - てっく煮ブログ

    「この発想はなかった!」と驚いた。genoTyp はフォント同士を交配させて新しいフォントを生み出す実験サイトだ。早速、試しにやってみた。1. 第一世代の親を決めるgenoTyp を開いて左上の [Breed] タブをクリックすると「交配ページ」が表示される。[add original font] ボタンをクリックして、祖先となるフォントを2つ追加してみた。交配させるために2つのフォントをドラッグしてくっつけた。くっついた状態になれば交配の準備は完了だ。2. 交配させてみる中央の [cross] ボタンを押すと第一世代が誕生する。4人の子供が誕生した。父親似だったり、母親似だったり、子供によって雰囲気が異なっている。3. 第一世代でも交配別の [original font] を追加させて、第一世代の中から気に入ったものと交配させてみた。3人の子供が第二世代に誕生した。4. さらに交配!今度

  • 具体例で学ぶ!情報可視化のテクニック 記事一覧 | gihyo.jp

    運営元のロゴ Copyright © 2007-2024 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    具体例で学ぶ!情報可視化のテクニック 記事一覧 | gihyo.jp
  • 自然言語処理における半教師あり学習のテキスト - 武蔵野日記

    最近移動続きであまり研究に時間は割けないのだが、は読めるということでを2冊、サーベイ的な記事を3(うち2はチュートリアルスライドつき)を紹介する。まず Semisupervised Learning for Computational Linguistics (Chapman & Hall/CRC Computer Science & Data Analysis) 作者: Steven Abney出版社/メーカー: Chapman and Hall/CRC発売日: 2007/09/17メディア: ハードカバーこの商品を含むブログ (4件) を見る を読む。このの著者の Steven Abney はブートストラッピングの理論的解析をした人で、 Steven Abney. Bootstrapping. 40th Annual Meeting of the Association fo

    自然言語処理における半教師あり学習のテキスト - 武蔵野日記
  • おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな

    やっと、Yコンビネータが何を意味するものなのか、どういう意義があるのかがわかりました。 名前を使わず再帰ができますよ!というだけのものじゃなかったのですね。 まずλありき 関数の話をしたいのです。 そのとき、いちいち hoge(x) = x * 2 としてhogeを・・・、とか名前をつけて話を進めるのがめんどうなので、関数を値としてあらわすと便利ということで、λという値を定義するのです。 そうすると、上のhoge関数なんかはλ(x)(x*2)などとあらわせますが、引数をあらわすのに()を使うといろいろまぎらわしいので、 λx.x*2 のように表記します。 というのがλ。 このとき、λになにかわたされたら、引数としてあらわされる部分を単純におきかえます。 (λx.x*2)y とあったら、xの部分をyでおきかえて (λx.x*2)y → y * 2 となります。λの引数部分を与えられた引数で置

    おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな
  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • はてな村の地図『HatenarMaps』を公開しました - kaisehのブログ

    はてな村』のアナロジーを当に地図にできたら面白いだろうなと思って、週末を潰して作ってみました。TopHatenarが蓄積しているDBを一部活用したサービスになっています。 Blogopolis このサービスを簡単に説明すると、はてなダイアリーのユーザに、獲得ブクマ数に応じた領土面積を割り当て、さらに似た者同士の領土を隣接させるという試みです。 地図の全体を見渡すことで、はてダの大まかなトレンドを掴むこともできるし、スケールを拡大していけば個別記事に到達することもできます。さらに、Google Mapsで検索するような感覚ではてなidやキーワードを入力して地図を探索したり、「去年と今年で勢力図がどう変わったか」を調べることもできます。 HatenarMapsはTopHatenarと同様、Javaで開発しました。フレームワーク構成もTopHatenarと一緒で、Cubby+Mayaa+S2

    はてな村の地図『HatenarMaps』を公開しました - kaisehのブログ
  • GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)

    GCアルゴリズム詳細解説 日語の資料がすくないGCアルゴリズムについて詳細に解説します トップページページ一覧メンバー編集 GC 最終更新: author_nari 2010年03月14日(日) 20:47:11履歴 Tweet このWikiが目指す所 GCとは? GCを学ぶ前に知っておく事 実行時メモリ構造 基アルゴリズム編 Reference Counter Mark&Sweep Copying 応用アルゴリズム編 IncrementalGC 世代別GC スナップショット型GC LazySweep TwoFinger Lisp2 Partial Mark and Sweep -Cycle Collection- Mostly Parallel GC train gc MostlyCopyingGC(Bartlett 1989) TreadmillGC(Barker 1992) 補足

    GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)
  • アルゴリズム - 合コンの効用を最大化する : 404 Blog Not Found

    2008年03月16日19:00 カテゴリアルゴリズム百選 アルゴリズム - 合コンの効用を最大化する 実は、1対1という制約を課せば、全体として最も満足が行く縁結びを決定するアルゴリズムがすでに存在する。 金融日記:東京 - ニューヨーク - ロンドン - パリ 世界の先進国の恋愛シーンで今起こっていること これから紹介する計量経済学モデルは、あらゆる社会科学の理論の中でも最もエレガントでそしてシンプルなもののひとつだと思います。 C言語による最新アルゴリズム事典 奥村晴彦 C言語による最新アルゴリズム事典 P. 4 安定な結婚の問題 stable mariage problem N人の男性とN人の女性が集団見合いをし、おのおのの異性を好みの順に順位付けした。この順位表をもとにして安定な縁結びの仕方を決めるのがこの問題である。仮に男性M1と女性F1が結婚したが、じつはM1はF1よりF2を

    アルゴリズム - 合コンの効用を最大化する : 404 Blog Not Found
  • d.y.d.構文解析の話をしよう

    16:46 08/03/30 YZ1.DLL 0.30 リリース しました。 具体的には、ヘッダの格納ファイル数フィールドに実際より大きい値が入ってると変なとこ読もうとして落ちるバグ修正。 GreenPad の修正は来週くらいには…。 Booooooost Boost 1.35.0 来てました。 Asio と Fusion と GIL の三枚看板がでかいですが、Bimap が地味に便利だ。 あと、mbさんのEgg のレビューが明日からでしょうか。(また スケジュール から消えてますが…Protoが入る前までロールバックしてる?) 他人事ながらドキドキ。 17:36 08/03/28 ケース 十年来の疑問なんですが、"case" に単独で対応する日語ってなんになるんですかね。 "case-insensitive" や "lowercase" の "case"。単に "case-insens

  • 1