タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

Programmingと数学に関するkomlowのブックマーク (2)

  • 第1回 環の定義 - Pythonで学ぶ「プログラミング可換環論」

    はじめに どうも初めまして、グレブナー基底大好きbot (Twitter:@groebner_basis) です。 最近、プログラマ向けの数学のセミナーや勉強会*1が開催されるなど、コンピュータを専門にする人が純粋数学に興味を持つ機会が増えてきました。 そこで、この記事では、計算科学とも関わりの深い「可換環論」について、プログラミングの側面から解説していきたいと思います。 可換環論とは 可換環論は、代数学に含まれる分野で、140年以上の歴史があります。名前の通り、「可換環」と呼ばれる数学的対象を研究する分野です。この可換環については、後々詳しく説明したいと思います。 かつての数学者は、計算といえば紙に書く「手計算」が主な手法でした。しかし、近年では、コンピュータの発達に伴い、可換環論の色々な計算が数式処理システム(Computer Algebra System) で実現できるようになりまし

    第1回 環の定義 - Pythonで学ぶ「プログラミング可換環論」
  • 自由変数と束縛変数 - Wikipedia

    数学や形式言語に関連する分野(数理論理学と計算機科学)において、自由変数(または自由変項、英: free variable)は数式や論理式で置換が行われる場所を指示する記法である。この考え方はプレースホルダーやワイルドカードにも関連する。 変数x は、例えば次のように書くと 束縛変数(または束縛変項、英: bound variable)になる。 全ての について が成り立つ。 あるいは となるような が存在する。 これらの命題では、x の代わりに別の文字を使っても論理的には全く変化しない。しかし、複雑な命題で同じ文字を別の意味で再利用すると混乱が生じる。すなわち、自由変数が束縛されると、ある意味ではその後の数式の構成をサポートする作業に関与しなくなる。 プログラミングにおいては、自由変数とは関数の中で参照される局所変数や引数以外の変数を意味する。 自由変数と束縛変数を正確に定義する前に、定

  • 1