Foundations and Trends R � in Databases Vol. 3, No. 4 (2010) 203–402 c � 2011 G. Graefe DOI: 10.1561/1900000028 Modern B-Tree Techniques By Goetz Graefe Contents 1 Introduction 204 1.1 Perspectives on B-trees 204 1.2 Purpose and Scope 206 1.3 New Hardware 207 1.4 Overview 208 2 Basic Techniques 210 2.1 Data Structures 213 2.2 Sizes, Tree Height, etc. 215 2.3 Algorithms 216 2.4 B-trees in Databases
2-3フィンガーツリー(2-3 finger tree、または単にfinger tree)とは、列を表す永続データ構造の一種であり、償却定数時間で両端への追加・削除が可能であり、対数時間で連結・分割・挿入が可能である。また、分割演算を変更すると優先度付きキューや探索木などを実装できる。2006年にRalf HinzeとRoss Patersonが発表した[1][2]。 関数型プログラミング言語などで使われる。Haskellでは、containersパッケージ[3]に列に特化した実装のData.Sequence[4]が含まれ、列に限定しない汎用の実装もfingertreeパッケージ[5]として存在する。Scalaでは標準ライブラリには含まれていないが、scalaz[6]などのライブラリなどで実装されている。その他、様々なプログラミング言語で実装されている。 2-3フィンガーツリーは分岐数が2
スプレー木(スプレーき、英: splay tree)は、平衡2分探索木の一種で、最近アクセスした要素に素早く再アクセスできるという特徴がある。挿入、参照、削除といった基本操作を O(log(n)) の償却時間で実行できる。多くの一様でない一連の操作において、その順序パターンが未知の場合でも、スプレー木は他の探索木よりもよい性能を示す。スプレー木はダニエル・スレイターとロバート・タージャンが発明した。 2分探索木の通常のあらゆる操作は、「スプレー操作」という1つの基本操作と組み合わせられる。スプレー操作とは、特定の要素が木の根に位置するよう再配置を行うことである。そのためには、まず通常の2分探索木での要素の探索を行い、次にその要素がトップになるように木の回転を行う。別の方法として、トップダウンアルゴリズムで探索と木の再配置を単一フェーズに統合することもできる。 スプレー木の性能がよいのは、頻
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く