タグ

pythonと統計に関するkote2kote2のブックマーク (3)

  • Python pandas プロット機能を使いこなす - StatsFragments

    pandas は可視化のための API を提供しており、折れ線グラフ、棒グラフといった基的なプロットを簡易な API で利用することができる。一般的な使い方は公式ドキュメントに記載がある。 Visualization — pandas 0.17.1 documentation これらの機能は matplotlib に対する 薄い wrapper によって提供されている。ここでは pandas 側で一処理を加えることによって、ドキュメントに記載されているプロットより少し凝った出力を得る方法を書きたい。 補足 サンプルデータに対する見せ方として不適切なものがあるが、プロットの例ということでご容赦ください。 パッケージのインポート import matplotlib.pyplot as plt plt.style.use('ggplot') import matplotlib as mpl m

    Python pandas プロット機能を使いこなす - StatsFragments
  • ビジネス実務の現場で有用な統計学・機械学習・データマイニング及びその他のデータ分析手法10+2選(2016年版) - 渋谷駅前で働くデータサイエンティストのブログ

    そう言えば3年前にこんなまとめ的エントリを書いたのでした。この内容はそのままかなりの部分が2年前に刊行した拙著の原案にもなったということで、色々思い出深いエントリです。 なのですが。・・・この3年の間に統計学・機械学習・データマイニングの諸手法及びそれを取り巻くビジネスニーズには様々な進歩があり、そろそろこの内容にも陳腐化が目立つようになってきました。ということで、3年間の進歩を反映してアップデートした記事を書いてみようと思います。前回は「10選」でしたが、今回は「10+2選」に改めました。そのラインナップは以下の通り。 統計学的検定(t検定・カイ二乗検定・ANOVAなど) t検定 カイ二乗検定 ANOVA(分散分析) その他の検定 重回帰分析(線形回帰モデル) 一般化線形モデル(GLM:ロジスティック回帰・ポアソン回帰など) ロジスティック回帰 ポアソン回帰 正則化(L1 / L2ノルム

    ビジネス実務の現場で有用な統計学・機械学習・データマイニング及びその他のデータ分析手法10+2選(2016年版) - 渋谷駅前で働くデータサイエンティストのブログ
  • R vs Python:データ解析を比較 | POSTD

    主観的な観点からPythonとRの比較した記事は山ほどあります。それらに私たちの意見を追加する形でこの記事を書きますが、今回はこの2つの言語をより客観的な目線で見ていきたいと思います。PythonとRを比較をしていき、同じ結果を引き出すためにはそれぞれどんなコードが必要なのかを提示していきます。こうすることで、推測ではなく、それぞれの言語の強みと弱みの両者をしっかりと理解できます。 Dataquest では、PythonとRの両方の言語のレッスンを行っていますが、データサイエンスのツールキットの中では両者ともそれぞれに適所があります。 この記事では、NBA選手の2013/2014年シーズンの活躍を分析したデータセットを解析していきます。ファイルは ここ からダウンロードしてください。解析はまずPythonとRのコードを示してから、その後に2つの異なるアプローチを解説し議論していきます。つま

    R vs Python:データ解析を比較 | POSTD
  • 1