1. 導入 これはMetropolis Hastings Algorithmについてまとめたものです. この手法はマルコフ連鎖モンテカルロ法の1つです. マルコフ連鎖モンテカルロ法とは多次元の確率変数を発生させるサンプリング方法の1つであり,複雑化しているモデルの推定方法として多くの分野で使用されています. そこでMCMCを使うことになった背景やその仕組みについて考えていき,メトロポリス・ヘイスティングス法やそれに類する手法を説明します. 2. 共役分布を用いたパラメータ推定 ベイズ統計ではパラメータ推定などの統計的計算は基本定理 \begin{equation} f\left( \theta | x \right) = \frac{f\left( x | \theta \right)f\left( \theta \right)}{f\left( x \right)} \propto f\