タグ

機械学習に関するlenhaiのブックマーク (7)

  • 情報解析と著作権──「機械学習パラダイス」としての日本

  • はじめに — 機械学習帳

    import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)

    はじめに — 機械学習帳
  • Hiroshi Takahashi

    Skip to the content. 機械学習の研究者を目指す人へ 機械学習の研究を行うためには、プログラミングや数学などの前提知識から、サーベイの方法や資料・論文の作成方法まで、幅広い知識が必要になります。レポジトリは、学生や新社会人を対象に、機械学習の研究を行うにあたって必要になる知識や、それらを学ぶための書籍やWebサイトをまとめたものです。 目次 プログラミングの準備 Pythonを勉強しよう 分かりやすいコードを書けるようになろう 数学の準備 最適化数学を学ぼう 基的なアルゴリズムとその実践 機械学習の全体像を学ぼう 基的なアルゴリズムを学ぼう 深層学習の基礎を学ぼう scikit-learnやPyTorchのチュートリアルをやってみよう サーベイの方法 国際会議論文を読もう Google Scholarを活用しよう arXivをチェックしよう スライドの作り方 論文の

  • 東大松尾研から新たに無償公開されたDeep Learning講座「DL4US」が良い、という話 - Qiita

    5/15より東大松尾研究室からDeepLearningエンジニア養成講座「DL4US」の演習コンテンツが無償公開されました。 ※講義パートは公開されていない DL4USコンテンツ公開ページ 私は業務でデータ分析に携わっており、sklern等での機械学習には触れたことがありますが Deep Learningは「いつか勉強しよう...」と思ってできていない状況でした。 ※一度Udemyで講座を受講しましたが、挫折しています。 まだDL4USのLesson0,1をやってみただけですが、非常に良いものだと感じたのでシェアしたいと思います!! DL4USについて DL4USの紹介記事から講座の特徴を引用させていただきます。 アプリケーション指向 高度な数学的知識は不要 1人1台独立した仮想GPU環境を用意 実際にモデルを学習させながら技術を習得 コードはすべてKeras (TensorFlow)と

    東大松尾研から新たに無償公開されたDeep Learning講座「DL4US」が良い、という話 - Qiita
  • ディープラーニングの力で誰でもゆかりさんの声になれる声変換技術を作ってみた

    2年ほど前に、自分の声を結月ゆかりにする声質変換技術を作り、動画を投稿しました。この技術には利用者の音声データが大量に必要であるという欠点があり、ゆかりさんになりたいというみなさんの願いを叶えるのが難しい状態でした。そこで、この技術を利用者の音声データが不要になるように改良し、誰でも簡単に使えるようにしました。ここではその技術について解説します。 手法 音声を直接変換しようとすると、利用者の音声データが必要になってしまいます。そこで、音声を直接変換するのをやめて、①音声を構成する要素である音素と音高に分解し、②音素と音高を目標の声(ゆかりさん)に再合成することを考えました。 ①は、音素の抽出に音声認識とOpenJTalkとJuliusを、音高の抽出にWORLDを用いれば簡単に実現できます。そのため、②さえ実現できれば、利用者の声のデータを用意することなく、誰でもゆかりさんの声に変換すること

    ディープラーニングの力で誰でもゆかりさんの声になれる声変換技術を作ってみた
  • メルアイコン変換器を作った話 - Qiita

    はじめに 「メルアイコン」と呼ばれる、Melvilleさんの描くアイコンはその独特な作風から大勢から人気を集めています。 上はMelvilleさんのアイコンです。 この方へアイコンの作成を依頼し、それをtwitterアイコンとしている人がとても多いことで知られています。 代表的なメルアイコンの例 (左から順にゆかたゆさん、みなぎさん、しゅんしゅんさんのものです (2020/12/1現在)) 自分もこんな感じのメルアイコンが欲しい!!ということで機械学習でメルアイコン生成器を実装しました!!.......というのが前回の大まかなあらすじです。 今回は別の手法を使って、キャラの画像をメルアイコンに変換するモデルを実装しました。例えばこんな感じで変換できます。 実装したコードはこちら 記事ではこれに用いた手法を紹介していきます。 GANとは 画像の変換にあたってはUGATITという手法を使って

    メルアイコン変換器を作った話 - Qiita
  • 機械学習アルゴリズムの学習法

    TL;DR 機械学習のアルゴリズムには詳しくなりたいけど実装はしない、という立場の人向けの学習資料まとめ 知人向けで、具体的には同僚医師がターゲット読者(めちゃ狭い!)だが、一定度他の人にも役に立つかも 改めて色々眺めてみてやっぱり大学の講義は質の高いものが多いと思った 知人が機械学習のアルゴリズムを学びたいと言っているので、オススメの資料などを見繕ってみるブログエントリ。 機械学習への関わり方を雑にアルゴリズムと実装で分けた場合に、アルゴリズムには詳しくなりたいけど実装をするわけではない、という立場の人向けである。 このようなタイプの人はそんなにいないと思うけど、具体的にはドメインエキスパートとして機械学習エンジニアと一緒にアルゴリズム・データ改善に取り組んでいて、アルゴリズムでどんなことをやっているかをちゃんと理解したい、みたいなのが一例となる。 なんとなくのイメージ的な理解だけだと、

    機械学習アルゴリズムの学習法
  • 1