2020年5月28日のブックマーク (1件)

  • 半径1の円周の長さはなぜ8になるのか - ねくノート

    平面 $\rea\ef 2$ 上の,$ ( 0 , 0 ) $ と $ ( x , y ) $ に端点を持つ線分を考えます. この線分の長さは $x+y $ だと"示す"ことができます.まず,この線分の長さは下図の直角三角形の斜辺の長さです. この斜辺の長さが $ x + y $ であることを示せばよいのです.いまこの直角三角形の底辺と高さの和は $ x + y $ です.そこで直角部分を次のように変形させてみます. 折れ線部分の長さは依然 $ x + y $ のままです.さらにこの折れ線を次のように変形させます. この折れ線の長さも $ x + y $ のままです.この折れ線の変形操作をどんどん続けていきます. するとこの折れ線は長さ $ x + y $ を常に保ったまま,斜辺にどんどん近づいていき,やがて斜辺に収束していきます.このことから斜辺の長さは $ x + y $ になるという

    半径1の円周の長さはなぜ8になるのか - ねくノート
    masakaty2
    masakaty2 2020/05/28
    2分割しても3分割しても8だから普通はその時点で仮説を棄却するかな