タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

mathematicsに関するmashumaron2のブックマーク (2)

  • モンティ・ホール問題 - Wikipedia

    モンティ・ホール問題 閉まった3つのドアのうち、当たりは1つ。プレーヤーが1つのドアを選択したあと、例示のように外れのドアが1つ開放される。残り2枚の当たりの確率は直感的にはそれぞれ 1/2(50%)になるように思えるが、はたしてそれは正しいだろうか。 モンティ・ホール問題(モンティ・ホールもんだい、英: Monty Hall problem)とは、確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題の一つとなっている。モンティ・ホール(英語版)(Monty Hall, 名:Monte Halperin)が司会者を務めるアメリカゲームショー番組、「Let's make a deal(英語版)[注釈 1]」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、モンティ・ホール

    モンティ・ホール問題 - Wikipedia
  • フェルマーの最終定理 - Wikipedia

    フェルマーの解説、特に「フェルマーの最後の定理」(Observatio Domini Petri de Fermat) を含む1670年版ディオファントスの『算術』。 ピエール・ド・フェルマー フェルマーの最終定理(フェルマーのさいしゅうていり、英: Fermat's Last Theorem)とは、3 以上の自然数 n について、xn + yn = zn となる自然数の組 (x, y, z) は存在しない、という定理である[注釈 1]。 フェルマーの大定理とも呼ばれる。ピエール・ド・フェルマーが「驚くべき証明を得た」と書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、フェルマーの死後330年経った1995年にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理またはフェルマー・ワイルズの定理とも呼ばれるようになった[1]。 17世紀、フラ

    フェルマーの最終定理 - Wikipedia
  • 1