概要 ニューラルポケットは、正常品と異常品を高精度で判別する画像分析アルゴリズムを開発し、国際学会ACPRにて発表しました。複数のオープンデータセットによる評価で、世界最高の異常画像検出精度を達成しています。 正常品と異常品を画像から識別するアルゴリズムは、工場や農業、インフラ管理などの幅広い領域において活用が進められており、属人的な作業を機械化することによる、見逃し率の低減や作業の効率化などに、大きな期待が寄せられています。 この領域においては、従来、正常品とのパターンマッチングを中心としたアプローチが主流でしたが、近年、深層学習を用いたアプローチが広まり、正常品の中でも形状変化が大きい、食品や柔らかい素材の部品など含め、幅広く活用することが出来るようになってきました。 本手法は、その発展として開発されたものであり、以下のような特徴を持ちます: 従来の手法では大量に必要となっていた異常画