著者 神嶌 敏弘 (Toshihiro Kamishima) リリース 2020-02-17 08:56:35 +0900 ダウンロード用 [ PDF版 ] [ ePub版 ] ソースレポジトリ [ https://github.com/tkamishima/mlmpy ]
scikit-learn(sklearn)の日本語の入門記事があんまりないなーと思って書きました。 どちらかっていうとよく使う機能の紹介的な感じです。 英語が読める方は公式のチュートリアルがおすすめです。 scikit-learnとは? scikit-learnはオープンソースの機械学習ライブラリで、分類や回帰、クラスタリングなどの機能が実装されています。 また様々な評価尺度やクロスバリデーション、パラメータのグリッドサーチなどの痒いところに手が届く機能もあります。 インストール scikit-learnの他にもnumpyとかscipyとかが必要です。 Windows 64 bit版の人は以下のURLに色々なインストーラーがおいてあるのでおすすめ Python Extension Packages for Windows - Christoph Gohlke その他の人は以下のURLを見て
Welcome¶ Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Theano features: tight integration with NumPy – Use numpy.ndarray in Theano-compiled functions. transparent use of a GPU – Perform data-intensive computations much faster than on a CPU. efficient symbolic differentiation – Theano does your d
前回、前々回とそれぞれロジスティック回帰(Logistic Regression)、制約付きボルツマンマシン(Restricted Boltzmann Machine, RBM)を紹介しました。 手法の説明については、各記事を参照してください。 今回は、これら2つを組み合わせて実装されている Deep Belief Nets (DBN) について紹介します。今回のコードは長いので、記事の最後の方に載せています。 DBNは Greedy Layer-Wise Training of Deep Networks [Bengio 2007] で提案されている手法ですが、こちらがDeep Learningのパイオニアと言っても過言ではありません。 DBNは多層ニューラルネットワークの形をしています。従来の研究では、多層にするほど精度が下がるという問題が指摘されていましたが(多層のため誤差の重みが少
今、python界でPyBrainが熱い!…わけじゃないですけど、個人的にけっこう注目しているライブラリ。機械学習ライブラリにおける、期待の新人が出てきなような気持ちです。 0.PyBrainとは?PyBrainっていうのはPythonによって動く、モジュール式の機械学習ライブラリです。python界ではいままでにもニューラルネットワークとかSVMなどを扱うライブラリが存在していましたが、PyBrainではそれらをより包括的に扱う、一種の環境としての機械学習ライブラリを目指しているようです。 PyBrainが優れているのはその思想もさることながら、扱っているアルゴリズムの多さにもあります。例えばFeaturesの欄を見てみると、 BackpropRpropPolicy GradientsSupport Vector MachinesEvolution StrategiesCMA-ESCom
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く