Python pandasとstatsmodelsを用いた時系列分析についてまとめる。pandasは欠損値の処理や移動平均の算出に、statsmodelsはARIMAなど時系列解析の実施に用いるとよさそう。以下の内容について順次取り上げていきたい。 ●単純移動平均 ●自己相関関数(ACF:Auto Correlation Function) ●偏自己相関関数(PACF:Partial Auto Correlation Function) ●自己回帰過程:AR(p) ●自己回帰移動平均過程:ARMA(p, q) ●自己回帰和分移動平均過程:ARIMA(p, q, d) ●多変量自己回帰過程:VAR(p) ●状態空間モデル ARIMAまでがひとつの系列のみを対象とした分析。VARはARの多変量版で、ある系列を予測するのに他の系列のデータも活用する。状態空間モデルは、観測方程式と状態方程式(真の