エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Python:時系列分析(その1) : 分析技術とビジネスインテリジェンス
Python pandasとstatsmodelsを用いた時系列分析についてまとめる。pandasは欠損値の処理や移動平均の算... Python pandasとstatsmodelsを用いた時系列分析についてまとめる。pandasは欠損値の処理や移動平均の算出に、statsmodelsはARIMAなど時系列解析の実施に用いるとよさそう。以下の内容について順次取り上げていきたい。 ●単純移動平均 ●自己相関関数(ACF:Auto Correlation Function) ●偏自己相関関数(PACF:Partial Auto Correlation Function) ●自己回帰過程:AR(p) ●自己回帰移動平均過程:ARMA(p, q) ●自己回帰和分移動平均過程:ARIMA(p, q, d) ●多変量自己回帰過程:VAR(p) ●状態空間モデル ARIMAまでがひとつの系列のみを対象とした分析。VARはARの多変量版で、ある系列を予測するのに他の系列のデータも活用する。状態空間モデルは、観測方程式と状態方程式(真の
2013/09/24 リンク