Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

このコースは、Pythonを使ってデータを解析し可視化するために必要なスキルを網羅しています。Pythonと科学計算のためのライブラリの使い方が完璧に理解できるようになっています。 このコースを習得すれば、次のような事ができるようになります。 - Pythonプログラミングへの知識が深まります。 - NumPyを使って、アレイを使った数値計算ができるようになります。 - pandasを使った効果的なデータ解析ができるようになります。 - Matplotlibとseabornを使って、出版にも使えるほど綺麗なデータの可視化が可能になります。 - Pythonを使って実際にデータを解析する方法論が身につきます。 - 機械学習への理解が相当高まります。 2023年5月にコースの大幅改訂を行いました。ほとんどすべての動画と資料が更新されています。 17時間以上、100本を超えるビデオと、すぐに使え
TL;DR ipython notebook --pylab inlineのかわりにipython notebook --matplotlib inlineを使おう.もしくはipythonの始めに%matplotlib inlineを実行しておく. iPython Notebookについて 周知の事実だとは思うが,iPythonは超便利なPythonのインタラクティブシェルだ.その一部としてiPython Notebookというのがあり,ブラウザでコードを実行できたり,実行結果をノートとして保存したり,matplotlibなどで描写したグラフをノートの中にそのまま表示したりできる.RでいうところのRstudio+knitrのような,解析レポートを作るときには重宝するツールとなっている. (http://nbviewer.ipython.org/gist/twiecki/3962843より)
このサイトについて DERiVEはコンピュータビジョン、画像認識が専門のMasaki Hayashiがお送りしている、コンピュータビジョン(Computer Vision)を中心としたITエンジニア、研究向けのブログです。※「DERiVE メルマガ別館」は2015/9月で廃刊致しました、 IPython の1つの機能として搭載されているIPython Notebookのチュートリアル記事です。 ————————————————————————————————————– (2014/09/02追記:) Qiitaに、この記事をもう少しダイジェストにして、概要説明のみにとどめた記事を公開しました: Qiita IPython Notebook チュートリアル ————————————————————————————————————– 本ブログでは「python,OpenCVを用いたCVプログラ
ちなみに Matplotlib はおそらく2次元グラフィック用の Python パッケージの決定版です。高速なデータの可視化手法や出版品質の図を多くのフォーマットで提供します。これから対話モードで matplotlib の機能を調べていきましょう。 ほとんどの状況は対話モードですませることができます。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く