ブックマーク / eetimes.itmedia.co.jp (4)

  • 東京大学ら、反強磁性型の励起子絶縁体を発見

    東京大学は、ブルックヘブン国立研究所などの研究グループと共同で、スピン三重項の励起子が生み出す反強磁性励起子絶縁体について、イリジウム酸化物を用いた実験により、その存在を明らかにした。 反強磁性励起子絶縁体の特定でカギを握る「縦モード」の検出 東京大学理学系研究科の諏訪秀麿助教は2022年2月、ブルックヘブン国立研究所、ポールシェラー研究所、テネシー大学、アルゴンヌ国立研究所、オークリッジ国立研究所、中国科学院、上海科技大学の研究グループと共同で、スピン三重項の励起子が生み出す反強磁性励起子絶縁体について、イリジウム酸化物(Sr3Ir2O7)を用いた実験により、その存在を明らかにしたと発表した。 電子と正孔(ホール)の結合状態である励起子が、ボーズ・アインシュタイン凝縮を起こすと「励起子絶縁体」と呼ばれる状態となる。この現象は古くから理論的に予言されていたが、実際の物質でスピン三重項の励起

    東京大学ら、反強磁性型の励起子絶縁体を発見
  • リチウムイオン電池の充電過程を原子レベルで解明

    東京大学は、走査透過型電子顕微鏡(STEM)を用い、次世代リチウムイオン電池の充電過程を原子レベルで解明することに成功した。高容量で寿命が長い電池材料の開発につながる研究成果とみられている。 劣化の主な原因は酸素放出や局所構造の乱れ 東京大学大学院工学系研究科附属総合研究機構の幾原雄一教授と柴田直哉教授、石川亮特任准教授および、仲山啓特任研究員のグループは2020年9月、走査透過型電子顕微鏡(STEM)を用い、次世代リチウムイオン電池の充電過程を原子レベルで解明することに成功したと発表した。今回の成果は、高容量で寿命が長い電池材料の開発につながるとみられている。 次世代の高容量リチウムイオン電池の正極材料として、Li2MnO3など「リチウム過剰系」が注目されている。従来材料のLiCoO2などに比べ、リチウムイオンを約1.6倍も多く含んでいるからだ。しかも、3次元的にリチウムの脱挿入が可能で

    リチウムイオン電池の充電過程を原子レベルで解明
  • 東京大学ら、「ワイル磁性体」を初めて発見

    東京大学物性研究所の黒田健太助教らによる研究グループは、反強磁性体マンガン化合物の内部で、「磁気ワイル粒子」を世界で初めて発見した。 外部磁場による制御で磁気ワイル粒子を自在に操作 東京大学物性研究所の黒田健太助教や冨田崇弘研究員、近藤猛准教授、中辻知教授を中心とする研究グループは2017年9月、理化学研究所創発物性科学研究センターの有田亮太郎チームリーダーらの協力を得て、反強磁性体マンガン化合物(Mn3Sn)内部で、「磁気ワイル粒子」を世界で初めて発見したと発表した。これにより、Mn3Snがワイル粒子と磁性を併せ持つ「ワイル磁性体」であることが初めて実証された。 ワイル粒子は質量がゼロの粒子である。2015年に固体の非磁性体物質であるヒ素化タンタル(TaAs)の中で、その存在が発見されたという。今回発見したワイル粒子は、これまでとは発現機構が全く異なるもので、物質の磁性によって創出される

    東京大学ら、「ワイル磁性体」を初めて発見
  • データは語る、鉄道飛び込みの不気味な実態

    「世界を『数字』で回してみよう」現在のテーマは「人身事故」。日常的に電車を使っている人なら、1度は怒りを覚えたことがある……というのが当のところではないでしょうか。今回のシリーズでは、このテーマに思い切って踏み込み、「人身事故」を冷静に分析します。⇒連載バックナンバーはこちらから アンケートにご協力いただける方を募集中です 連載について、メールで、簡単なアンケートなどに応じていただける方を募集しております。 こちらのメールアドレス(one-under@kobore.net)に『アンケートに応じます』とだけ書いたメールを送付していただくだけで結構です(お名前、自己紹介などは必要ありません)。ぜひ、よろしくお願い致します。 なお、アンケートにご協力いただいた方には、江端の脱稿直後の(過激なフレーズが残ったまま?の)生原稿を送付させていただくという特典(?)がついております。

    データは語る、鉄道飛び込みの不気味な実態
  • 1