元官僚の高橋洋一氏が時系列データの相関係数が高い事を論拠にしているが、この論証方法は全くもって厳密ではない。 計量経済学では時系列データの相関係数はあてにならない事は80年代から良く知られており、これに関連した業績でエングルとグレンジャーは、2003年にノーベル経済学賞を受賞している。 高橋氏のトリックを説明したい。世の中には時間とともに変化していくトレンド*1と言うのが多くある。このトレンドがあるデータを二つ比較すると、どちらも時間に対して相関しているため、相関があるように見えてしまう。 例えば戦後、一人あたりの米の消費量は減少し、コンピューターの普及台数は飛躍的に伸びたが、この二つの現象を結びつけて考える人はいない。しかし、米の消費量とコンピューターの普及台数は、高い相関を持つ事になる。 実データの場合は屁理屈をつける事も可能かも知れないので、シミュレーションして確かめてみよう。