PDF形式のファイルを御覧いただく場合には、Adobe Readerが必要です。 Adobe Readerをお持ちでない方は、まずダウンロードして、インストールしてください。
PDF形式のファイルを御覧いただく場合には、Adobe Readerが必要です。 Adobe Readerをお持ちでない方は、まずダウンロードして、インストールしてください。
(前回記事はこちらから) ベイジアンの知識もいい加減な僕がこんなシリーズ記事を書くとかほとんどギャグの領域なんですが(汗)*1、2回目の今回の記事ではそもそもMCMCって何だったっけ?ってところから始めようと思います。 今回参考にするのは、主に久保先生の緑本です。そもそもGLM~GLMM~階層ベイズ+空間統計学について生態学研究をモチーフに分かりやすく書かれた本ですが、後半はMCMCの話題で統一されています。 データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学) 作者: 久保拓弥出版社/メーカー: 岩波書店発売日: 2012/05/19メディア: 単行本購入: 16人 クリック: 163回この商品を含むブログ (18件) を見る MCMCまわりでは他にも非常に多くの良書がありますが、「初心者向けにも分かりやすくて」「段階を追って」「なぜ
前回の書籍リストは、基本的には「そこそこ統計学のことは知っていて」「機械学習とはどんなものかというイメージがあって」「Pythonの初歩ぐらいはできて」「本を見ながらで良ければRを使える」人たちを対象にしたものでした。 なのですが、世の中そんな最初から基礎レベルであってもきちんとスキルが揃ってる人なんてそうそう多くないわけで*1、特に今の「ビッグデータ」「データサイエンティスト」ブームを受けて勉強を始める人のほとんどが完全な初心者でしょう。 ということで、僕が実際に読んだことがあったり人から借りて読んでみたり書店で立ち読みしたりしたものの中から、そういう初心者向けのテキストを5冊に絞って紹介してみます。なお、毎回毎回しつこいですが下のリンクから書籍を購入されても、儲かるのは僕ではなくはてななのでそこのところよろしくです(笑)。 データ分析の「考え方」を身に付けるために 色々評判の良いものも
Musings on data science, machine learning and stats. I've been impressed in recent months by the number and quality of free datascience/machine learning books available online. I don't mean free as in some guy paid for a PDF version of an O'Reilly book and then posted it online for others to use/steal, but I mean genuine published books with a free online version sanctioned by the publisher. That
『アート・オブ・Rプログラミング』の日本語訳が出たので早速買いました。 細かい仕様の解説が多くちりばめられていて結構いい感じです。 プログラミング初心者向けではないですが、他の言語になじんでる人が R に入門したい場合には、他の入門書よりもこっちを読んだ方が手っ取り早いのではないかと思います。 例えば、下記のように、他言語との比較による解説が各所に見られます。 他のスクリプト言語の経験がある読者は、Python での None や Perl での undefined などの「存在しない」値を知っているかもしれません。実は、R にはこのような値が2つあります。NA と NULL です。 http://www.amazon.co.jp/gp/product/4873115795 さて、今日はこの本の 1.7.4 節からの話題です。 統計言語 R には、公式ヘルプが付属しており、例えば平均値を計
Rとは? R は統計計算とグラフィックスのためのフリーソフト(GNU-style copyleft)である。 Rは商用ソフトのS(AT&T ベル研究所のRichard A. Becker, John M. Chambers, and Allan R. Wilks により作られた統計解析やグラフィックスのための言語であり、製品としては S version 4 や S-Plusがある)に操作環境などが良く似ており、Sを使っている場合には関数の利用法がほぼ同じことから取っつきやすく、Sで定義した関数などはRでもほとんど変更なしに動作する。 Sの現在のバージョンほどは新たな手法やグラフ表示法は取り入れられていないが、通常の解析ならば不都合は感じないだろう。 CRAN(The Comprehensive R Archive Network)にはRに対する追加パッケージも沢山あり、新たな手法は、これら
RjpWiki はオープンソースの統計解析システム 《R》 に関する情報交換を目的とした Wiki です † どなたでも自由にページを追加・編集できます. (初めて投稿・既存記事への追加・修正を行なう方はこのページ末の注意*1を御覧下さい) ページへのファイル添付については、画像ファイルのみパスワードなしで可能としてあります(ページ上部「画像添付」より)。その他のファイルの添付はパスワードを入力することで可能です(ページ上部「ファイル添付」より)。現在のパスワードは, Rでの round(qt(0.2,df=8),3) の実行結果です。 スパム書き込みに対処するため、書き込み系の処理に対してパスワードを設けました。ユーザ名の欄には,Rで round(qt(0.2,df=8),3) を実行したときの結果を入力します。パスワード欄には何も入力しないままでOkです。 Rを起動して、文字がた
講習会の目的 本講習会は, R についての自習の基盤をつくることを目指します。 たとえ初心者向けの数時間の入門講習でなく1年間の毎週の演習授業であっても,R に関してすべてを説明するのは不可能だと思われます。 R の世界は,縦にはそこそこ深く,横には果てが見えないほど広いです。 CRAN に登録されている R のパッケージは 1000 を超えました。 よって,受講者の幅も広いことですし,受講者各自にとってぴったりな統計解析の実用的な解説をするのはあきらめて, 各自が必要に応じて情報を探し,見つけたものを難なく活用できるようになること,を目標にしました。 ここに自分の求めている分析手法や作図法などの答えがあるとは期待しないで下さい。それは帰ってからのあなたの楽しい仕事です。 R の利用と R 言語 R の根幹は R 言語のインタプリタであり,ユーザはR言語を駆使することでRを操作します。 S
2016-10-05 MenuBar 2016-09-21 NJKの鉛筆削り 2016-03-17 迷惑電話一覧 2016-02-21 FrontPage S-PLUS S 2014-06-18 自己紹介 2014-04-23 研究業績 2013-03-28 データのダウンロード 2011-10-20 魚の煮汁 2011-09-02 Fox メモ・雑文 2011-03-12 ポスター印刷のヒント PDFをグレースケールへの変換 2010-12-14 実習/生物情報処理 ■Wiki形式でのページを2005年1月26日に開始しました. ■リンクはフリーですが,メールでお知らせいただければ幸いです. ■ご意見・ご感想・その他のお問い合わせがございましたら mailto:chubo@hiroshima-u.ac.jp までどうぞ. Online:
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く