Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

最終更新:2016年1月24日 ※フォントや参考文献などを修正しました 予測のためには、実世界をモデル化しなければなりません。モデル化することさえできれば、あとはそのモデルに数値を突っ込むだけで勝手に予測が出来てしまいます。 前回(単回帰)は説明変数が一つだけでした。一つの値からまた別の値を予測すると言うだけだったので、どのモデルにすればいいのか、どの変数を使って予測すればいいのか、ということを考えなくても済みました。 しかし、実際に予測をする場合は多くの変数を用いたほうが当てはまりもよくなるし、実用的でしょう。 どの変数を用いて、どの変数を使わないのか、それを決めるための色々な方法(検定とAIC)とRによる計算方法を紹介します。 特に最後の方に紹介するパッケージMuMInはお勧めです。簡単にモデル選択ができます。 ※ 2015年9月2日にMuMInの使い方を一部修正しました。 ※ コピペ
Agenda データ構造 たくさんある>< ベクトル Rの格言 いろんなベクトルの作り方 規則的データの生成 同じデータを繰り返す ベクトルへのアクセスの方法 アクセス方法にもいろいろある まだまだあるよ、アクセス方法 行列 埋めていく順番 すでにあるベクトルを束ねる cbind rbind 行列へのアクセス方法 行列の基本演算 積がやっかい 積を求めたいときは「%*%」を使うべし 逆行列を求める ちなみに 行列式 固有値 配列 リスト 例 ちなみに unlistのtips リストへのアクセス リストは結構難しい>< 例 リストの要素には名前を付けることができる Rでlistがどのように使われているか データフレーム 例 データフレームを作る データフレームに列を追加と削除 データフレームに行を追加 因子型 irisのデータでやってみる irisデータ 層別にSepal.Lengthの長さ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く