タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

statisticsとモデルに関するnodatのブックマーク (1)

  • モデル選択_理論編 | Logics of Blue

    最終更新:2016年1月24日 ※フォントや参考文献などを修正しました 予測のためには、実世界をモデル化しなければなりません。モデル化することさえできれば、あとはそのモデルに数値を突っ込むだけで勝手に予測が出来てしまいます。 前回(単回帰)は説明変数が一つだけでした。一つの値からまた別の値を予測すると言うだけだったので、どのモデルにすればいいのか、どの変数を使って予測すればいいのか、ということを考えなくても済みました。 しかし、実際に予測をする場合は多くの変数を用いたほうが当てはまりもよくなるし、実用的でしょう。 どの変数を用いて、どの変数を使わないのか、それを決めるための色々な方法(検定とAIC)とRによる計算方法を紹介します。 特に最後の方に紹介するパッケージMuMInはお勧めです。簡単にモデル選択ができます。 ※ 2015年9月2日にMuMInの使い方を一部修正しました。 ※ コピペ

  • 1