ブックマークしました ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください Twitterで共有
TensorFlowで株価予想シリーズ 0 - Google のサンプルコードを動かしてみる 1 - 終値が始値よりも高くなるかで判定してみる 2 - 日経平均225銘柄の株価予想正解率ランキング〜 3 - 日本3506銘柄の株価予想ランキング 4 - 実際に売買したら儲かるのかシミュレーションしてみる 5 - 大きく上がると予想されたときだけ買ってみるシミュレーション 6 - 学習データの項目を増やす!隠れ層のサイズも増やす! 7 - 株価が何%上昇すると予測したら買えばいいのか? 8 - どの銘柄を買うか 9 - 年利6.79% 前置き 猫も杓子もディープラーニングディープラーニング。なにそれ美味いの? って感じだけど、 2015年末に Google が書いた 「Machine Learning with Financial Time Series Data on Google Clo
前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する
続・TensorFlowでのDeep Learningによるアイドルの顔識別 - すぎゃーんメモ の続き、というかなんというか。 前回までは「ももいろクローバーZのメンバー5人の顔を識別する」というお題でやっていたけど、対象をより広範囲に拡大してみる。 様々なアイドル、応援アプリによる自撮り投稿 あまり知られていないかもしれないけど、世の中にはものすごい数のアイドルが存在しており、毎日どこかで誰かがステージに立ち 歌って踊って頑張っている。まだまだ知名度は低くても、年間何百という頻度でライブを中心に活動している、所謂「ライブアイドル」。俗に「地下アイドル」と言ったりする。 ライブアイドル - Wikipedia そういったアイドルさんたち 活動方針も様々だけど、大抵の子たちはブログやTwitterを中心としてWebメディアも活用して積極的に情報や近況を発信していたりする。 そんな中、近年登
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く