機械学習は翻訳、推薦システム、異常および不正検出など、さまざまなアプリケーションで利用されており、今後も機能強化のために、機械学習を組み入れるサービスはますます増えていくと考えられています。しかし機械学習はモデルの学習や評価など、これまでのアプリケーションにはない処理が必要となるだけでなく、正常に動作しているかを単純なテストだけでは検証できないなど、特別な配慮が必要となります。本書は機械学習を利用するアプリケーションを設計、構築、デプロイするために注意すべき点をまとめました。繰り返しによりデータやモデルを漸進的に改善する方法、モデル性能の監視やモデルのデバッグを行う方法など、アプリケーションを構築、運用する上で、その品質を左右する一連のプロセスを詳しく解説します。 訳者まえがき まえがき 第Ⅰ部 適切な機械学習アプローチの特定 1章 製品目標からML の枠組みへ 1.1 何が可能であるかを