タグ

ブックマーク / tech-blog.abeja.asia (2)

  • GPT-neoxの学習用にマルチノード並列学習環境を整えた with DeepSpeed - ABEJA Tech Blog

    1. はじめに 2. 並列学習環境を調べる 並列学習方法を調べる ネットワーク、コンピューティング周りを調べる 3. インフラ環境を構築する コンパクトプレースメントポリシーの作成 Compute Engine を起動する (Fast Socket と gVNIC を利用する) 4. まずはシングルノードで動かす 5. 次はマルチ環境で動かす w/ Docker リポジトリをクローン ssh/config を作成 authorized_keys を作成 hostfile を作成 Dockerbuild 6. つまずいたポイント 学習途中に出力したファイルを再利用するのでNFSが必要に NFSのリージョンを間違えて速度が出なかった 大量のGPUの調達はリソースを確保できないかもしれないので要サポート確認 コンパクトプレースメントポリシーは邪魔になりそうだった 7. 結果 8. まとめ

    GPT-neoxの学習用にマルチノード並列学習環境を整えた with DeepSpeed - ABEJA Tech Blog
    ohtaman
    ohtaman 2023/05/03
  • ノイズのある教師データを用いた機械学習に関する研究サーベイ - ABEJA Tech Blog

    こんにちは、Research Internの荒尾(@karolis_ml)です。 日進月歩の勢いで研究が進んでいる深層学習ですが、教師あり学習でもっとも大事なデータのアノテーション、応用分野ではまだまだ大変ですよね。例えば、犬の写真から犬種を判断する分類器を作ろうとして教師データが必要になったとき、あなたは以下の画像にどんなラベルをつけるでしょうか? 出典: Pixabay 犬好きの方は正しくアラスカンマラミュート、そうではない方は似た有名犬種であるシベリアンハスキーと答えられたことでしょう。マラミュートの茶色い目(かわいい)や小さめの尖った耳(かわいい)を見分けて正しくラベル付けをするのは、決して簡単ではありません。 このようなアノテーションの分野に関して当ブログでは以前、Bounding BoxやSegmentationの効率化についての研究サーベイを行いましたが、この犬種分類のような

    ノイズのある教師データを用いた機械学習に関する研究サーベイ - ABEJA Tech Blog
    ohtaman
    ohtaman 2019/07/31
  • 1