タグ

mathとwikipediaに関するoligamiのブックマーク (3)

  • グリゴリー・ペレルマン - Wikipedia

    グリゴリー・ヤコヴレヴィチ・ペレルマンまたはペレリマン(ロシア語: Григо́рий Я́ковлевич Перельма́н [ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman] ( 音声ファイル), Grigori Yakovlevich Perelman, 1966年6月13日 – )は、ロシア出身の数学者。ロシア系ユダヤ人[1]。 ミレニアム懸賞問題の一つであるポアンカレ予想を、多くの数学者が位相幾何学(トポロジー)の観点から挑戦する中、微分幾何学や物理学的アプローチで解決したことで知られる。 来歴[編集] サンクトペテルブルク生まれ。元ステクロフ数学研究所数理物理学研究室所属。専門は幾何学・大域解析学 (Global Analysis) ・数理物理学。電気技術者の父と数学教師の母の間に生まれる。幼少期に母親から数学の英才教育を受け、なおかつ自らも

    グリゴリー・ペレルマン - Wikipedia
  • 四色定理 - Wikipedia

    4色に塗り分けられている(常にさらに外側の領域を想定することで、地図の外縁部は3色で塗り分け可能で、球面においても四色定理が成立することがわかる) 四色定理(よんしょくていり/ししょくていり、英: Four color theorem)とは、厳密ではないが日常的な直感で説明すると「平面上のいかなる地図も、隣接する領域が異なる色になるように塗り分けるには4色あれば十分だ」という定理である。 グラフ理論的に言えば、この定理はループのない平面グラフに対して次のことを述べている。平面グラフに対して、その彩色数はである。 四色定理の直観的な記述 - 「平面を連続した領域に分割したとき、隣接する2つの領域が同じ色を持たないように、領域は最大でも4つの色を使って着色できる」 - を正しく解釈する必要がある。 これを「地図の塗り分け」とすると、例えば飛び地を所属地と常に同じ色にしなければならない、とした場

    四色定理 - Wikipedia
  • モンティ・ホール問題 - Wikipedia

    モンティ・ホール問題 閉まった3つのドアのうち、当たりは1つ。プレーヤーが1つのドアを選択したあと、例示のように外れのドアが1つ開放される。残り2枚の当たりの確率は直感的にはそれぞれ 1/2(50%)になるように思えるが、はたしてそれは正しいだろうか。 モンティ・ホール問題(モンティ・ホールもんだい、英: Monty Hall problem)とは、確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題の一つとなっている。モンティ・ホール(英語版)(Monty Hall, 名:Monte Halperin)が司会者を務めるアメリカゲームショー番組、「Let's make a deal(英語版)[注釈 1]」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、モンティ・ホール

    モンティ・ホール問題 - Wikipedia
  • 1