私が2012年にニューラルネットの逆襲(当時のコメント)というのをブログに書いてからちょうど5年が経ちました。当時はまだDeep Learningという言葉が広まっておらず、AIという言葉を使うのが憚られるような時代でした。私達が、Preferred Networks(PFN)を立ち上げIoT、AIにフォーカスするのはそれから1年半後のことです。 この5年を振り返る良いタイミングだと思うので考えてみたいと思います。 1. Deep Learning Tsunami 多くの分野がこの5年間でDeep Learningの大きな影響を受け、分野特化の手法がDeep Learningベースの手法に置き換わることになりました。NLP(自然言語処理)の重鎮であるChris Manning教授もNLPで起きた現象を「Deep Learning Tsunami」[link] とよびその衝撃の大きさを表して
こんにちは。私はSergey Kamardin(セルゲイ・カマルディン)です。Mail.Ru(ロシアの電子メールサービス会社)で開発者をしています。 この記事では、どのように私がGoを使って高負荷対応のWebSocketサーバを開発したかについて説明したいと思っています。 パフォーマンス最適化のアイデアやテクニックを通じて、WebSocketの知識はあるもののGoについてはほとんど知らないという方のお役に立てれば幸いです。 1. はじめに まずは開発に至った経緯について、どうして私たちがこのサーバを必要としたのかを説明しておきましょう。 Mail.Ruには多くのステートフルなシステムがあります。ユーザのeメール保存もその1つです。システム内、およびシステムイベントの状態変更を追跡する方法にはいくつかの種類がありますが、それらは主に状態変更に関するシステム通知、または周期的なシステムのポーリ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く