Disco is a lightweight, open-source framework for distributed computing based on the MapReduce paradigm. Disco is powerful and easy to use, thanks to Python. Disco distributes and replicates your data, and schedules your jobs efficiently. Disco even includes the tools you need to index billions of data points and query them in real-time. Disco was born in Nokia Research Center in 2008 to solve rea
前回、JavaScriptでMap Reduceのコードが書けるHadoop Streamingについて紹介しました。 標準入出力さえサポートされてあれば、任意のコードでMap Reduuceの処理が書ける、というものでしたが、エンジニアはそもそも面倒くさがり。コードも書くのも面倒です。 と、いうわけで、今回はもうコードすら書かずにSQLライクでMap ReduceできるHiveというプロダクトについて、まとめたいと思います。 Hive Hiveとは、簡単に言うとHadoop上で動作するRDBのようなものです。 HDFSなどの分散ファイルシステム上に存在するデータに対して、HiveQLというSQLライクな言語で操作できます。 で、面白いのがHiveQLの操作は基本的にMap Reduceのラッパーになっていること。 要するに、SELECT文実行すると裏でMap&Reduceのタスクが走り出
先日、隅田川の屋形船で花見と洒落込んだのですが、その日はまだ一分咲きも行ってなくて悲しい思いをしたmikioです。今回はTokyo Tyrant(TT)に格納したデータを対象としてMapReduceのモデルに基づく計算をする方法について述べます。 MapReduceとは Googleが使っているという分散処理の計算モデルおよびその実装のことだそうですが、詳しいことはググってください。Googleによる出自の論文やApacheプロジェクトによるHadoopなどのオープンソース実装にあたるのもよいでしょう(私は両者とも詳しく見ていませんが)。 今回の趣旨は、CouchDBがMapReduceと称してJavaScriptで実現しているデータ集計方法をTTとTCとLuaでやってみようじゃないかということです。簡単に言えば、以下の処理を実装します。 ユーザから計算開始が指示されると、TTは、DB内の
Amazon Elastic MapReduceを使ってみた 2009-04-03 (Fri) 3:06 Amazon EC2 連日のEC2ネタです。本日、AmazonからElastic MapReduceというサービスがリリースされました。大規模データ処理技術が一気に民間の手に下りてくる、まさに革命的なサービスだと思います。 Amazon Elastic MapReduce Amazon ElasticMapReduce 紹介ビデオ With Hadoop, Amazon Adds A Web-Scale Data Processing Engine To Its Cloud Computer by techcrunch.com Elastic MapReduceは、Googleの基盤技術の一つであるMapReduceを時間単位課金で実行できるサービスです。MapReduceについては以
By Ilya Grigorik on March 03, 2009 After immersing yourself into the field of distributed computing and large data sets you inevitably come to appreciate the elegance of Google's Map-Reduce framework. Both the generality and the simplicity of its map, emit, and reduce phases is what makes it such a powerful tool. However, while Google has made the theory public, the underlying software implementat
ということで、Google MapReduceの実装であるHadoopを使ったMapReduceと、JMSを使ったMapReduceをやってみました。 メッセージキューを使って分散MapReduceを実装する HadoopでのMapReduceを気軽に試すサンプル これ何のためにやったかというと、そこらにあるような数十台規模のサーバーを前提としたときに、Hadoopの有効性、ひいてはその元になってるGoogle MapReduceの有効性について疑問に思ったからです。そこで、ちょっと試してみた、と。 ここで、メッセージキューを使った場合に1秒でできてた処理が、Hadoopを使うとスタンドアロンモードでも40秒近くかかりました。擬似分散モードだと4分近くです。 いくらHadoopの実装がひどいとしても、これはあんまりです。 Googleでの実装はもっと効率的なものになっていると思いますが、そ
"MapReduce" は Google のバックエンドで利用されている並列計算システムです。検索エンジンのインデックス作成をはじめとする、大規模な入力データに対するバッチ処理を想定して作られたシステムです。 MapReduce の面白いところは、map() と reduce() という二つの関数の組み合わせを定義するだけで、大規模データに対する様々な計算問題を解決することができる点です。 MapReduce の計算モデル map() にはその計算問題のデータとしての key-value ペアが次々に渡ってきます。map() では key-value 値のペアを異なる複数の key-value ペアに変換します。reduce() には、map() で作った key-value ペアを同一の key で束ねたものが順番に渡ってきます。その key-values ペアを任意の形式に変換すること
気になる記事をスクラップできます。保存した記事は、マイページでスマホ、タブレットからでもご確認頂けます。※会員限定 無料会員登録 詳細 | ログイン Stephen Baker (BusinessWeek誌シニアライター、ニューヨーク) 米国時間2007年12月13日更新 「Google and the Wisdom of Clouds」 「データ量が今の1000倍になったとしたら、君ならどうする?」 この質問をされると、それまで自信満々で入社面接に臨んでいた若者はしどろもどろになってしまう。 今や超難関、米グーグル(GOOG)の採用面接でのひとコマである。質問を投げかけるのは、上級ソフトウエアエンジニアのクリストフ・ビシグリア氏(27歳)。ほっそりとした体格と、ウエーブのかかった長髪のビシグリア氏が試しているのは、目の前にいる大学生が「グーグラー(グーグル社員)」流の発想法について来られ
iPhoneの一般修理店は予約なしでも来店できる? 基本的には飛び込みで修理に行ってもOK iPhoneを置いていたソファにうっかりと腰かけてしまい、パネルを割ってしまった、こんな時はスマホの一般修理店へ行きましょう。画面割れは、スマホやタブレットの故障原因として非常に多いものです。予約なしで突然お店に行っても平気かしらと、不安に思う方々もいらっしゃるかもしれません。結論としては特に問題はなく、予約なしで訪問しても画面割れの修理はお願いできます。 ただし他のサービス業のお店同様、予約なしの場合、お店が混雑していると順番待ちをしなければいけないです。特に繁盛しているスマホ修理のお店だと、行列が店内で出来ており、予約なしだと、自分の順番が巡ってくるまで長時間待たされる可能性があります。平日の朝、昼なら利用客が少ない場合が多く、飛び込みでも比較スムーズに修理が頼めます。 予約は入れた方が時短に、
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く