散乱波の波長 λ と散乱粒子の直径 d に関わるパラメータとして、円周率 π を係数としたサイズパラメータ があり、α ≪ 1 はレイリー散乱、α ≈ 1 はミー散乱、α ≫ 1 は幾何光学近似で表現できる。 入射光の電磁場のうちの電場が微粒子の電場に作用し、粒子内の電子が強制的に振動させられて双極子モーメントが励起されることによって起こる[6]。したがって、粒子が振動数 ν0 の双極振動子で、ν0 が入射光の振動数 ν に比して ν ≪ ν0 の場合、散乱強度 I は となる。ここで、I0 は入射光の強度、N, m, e は振動子の数と質量および電荷、c は光速である[7]。 また、上式で ν4/c4 = λ−4 なので、粒子が波長に比べて十分小さい場合、散乱強度は入射光の波長の4乗に反比例し、下式で与えられる[8]。 ここで、R は粒子までの距離、θ は散乱角、n は屈折率である。この
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く