タグ

ブックマーク / qiita.com/kenmatsu4 (1)

  • 【ディープラーニング】ChainerでAutoencoderを試して結果を可視化してみる。 - Qiita

    ChainerでAutoencoderを試してみる記事です。前回の記事、「【機械学習】ディープラーニング フレームワークChainerを試しながら解説してみる。」の続きとなります。ディープラーニングの事前学習にも使われる技術ですね。 記事で使用したコードはコチラから取得できます。 1.最初に AutoencoderとはAuto(自己) encode(符号化)er(器)で、データを2層のニューラルネットに通して、自分自身のデータと一致する出力がされるようパラメーターを学習させるものです。データだけあれば良いので、分類的には教師なし学習になります。 学習フェーズ こんなことをして何が嬉しいのかというと、 入力に合わせたパラメーター$w_{ji}$を設定できる。(入力データの特徴を抽出できる) その入力に合わせたパラメーターを使うことでディープなニューラルネットでの学習を可能にする(ランダム値

    【ディープラーニング】ChainerでAutoencoderを試して結果を可視化してみる。 - Qiita
  • 1